Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Cell Biochem Biophys ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777991

RESUMO

Proliferative vitreoretinopathy (PVR) develops after an unsuccessful or complicated recovery from rhegmatogenous retinal detachment (RRD) surgery. Intraocular scar formation with the contribution of epithelial-mesenchymal transition (EMT) in RPE cells is prominent in the pathology of PVR. In the present study, the EMT process was experimentally induced in human retinal pigment epithelium (RPE; ARPE-19) cells, and the effect of atorvastatin on the process was studied. The mRNA and protein levels of mesenchymal markers actin alpha 2 (ACTA2) / alpha-smooth muscle actin (α-SMA) and fibronectin (FN), and epithelial markers occludin (OCLN) and zonula occludens-1 (ZO-1) were measured using quantitative real-time PCR (qRT-PCR) and western blot methods, respectively. In addition, α-SMA and FN were visualized using immunofluorescence staining. Cells were photographed under a phase contrast light microscope. Changes in the functionality of cells following the EMT process were studied using the IncuCyte scratch wound cell migration assay and the collagen cell invasion assay with confocal microscopy. The induction of EMT in ARPE-19 cells increased the expression of mesenchymal markers ACTA2/α-SMA and fibronectin and reduced the expression of epithelial marker OCLN both at mRNA and protein levels. The mRNA levels of ZO-1 were lower after EMT, as well. Increased levels of α-SMA and FN were confirmed by immunofluorescence staining. Atorvastatin further increased the mRNA levels of mesenchymal markers ACTA2 and FN as well as the protein levels of α-SMA and reduced the mRNA levels of epithelial markers OCLN and ZO-1 under the EMT process. EMT promoted wound closure and cell invasion into the 3D collagen matrix when compared to untreated control cells. These data present cellular changes upon the induction of the EMT process in ARPE-19 cells and the propensity of atorvastatin to complement the effect. More studies are needed to confirm the exact influence of the EMT process and atorvastatin treatment on the PVR development after RRD surgery.

2.
Int Ophthalmol ; 44(1): 158, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530532

RESUMO

PURPOSE: Rhegmatogenous retinal detachment is a severe vision-threatening complication that can result into proliferative vitreoretinopathy (PVR) and re-detachment of the retina if recovery from surgery fails. Inflammation and changes in retinal pigment epithelial (RPE) cells are important contributors to the disease. Here, we studied the effects of simvastatin and amfenac on ARPE-19 cells under inflammatory conditions. METHODS: ARPE-19 cells were pre-treated with simvastatin and/or amfenac for 24 h after which interleukin (IL)-1α or IL-1ß was added for another 24 h. After treatments, lactate dehydrogenase release, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) processing, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity, prostaglandin E2 (PGE2) level, and extracellular levels of IL-6, IL-8, monocytic chemoattractant protein (MCP-1), vascular endothelial growth factor (VEGF), and pigment epithelium-derived factor, as well as the production of reactive oxygen species (ROS) were determined. RESULTS: Pre-treatment of human ARPE-19 cells with simvastatin reduced the production of IL-6, IL-8, and MCP-1 cytokines, PGE2 levels, as well as NF-κB activity upon inflammation, whereas amfenac reduced IL-8 and MCP-1 release but increased ROS production. Together, simvastatin and amfenac reduced the release of IL-6, IL-8, and MCP-1 cytokines as well as NF-κB activity but increased the VEGF release upon inflammation in ARPE-19 cells. CONCLUSION: Our present study supports the anti-inflammatory capacity of simvastatin as pre-treatment against inflammation in human RPE cells, and the addition of amfenac complements the effect. The early modulation of local conditions in the retina can prevent inflammation induced PVR formation and subsequent retinal re-detachment.


Assuntos
Fenilacetatos , Descolamento Retiniano , Vitreorretinopatia Proliferativa , Humanos , Vitreorretinopatia Proliferativa/metabolismo , Descolamento Retiniano/cirurgia , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Epitélio Pigmentado da Retina , Sinvastatina/metabolismo , Sinvastatina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios , Inflamação/metabolismo
3.
Mol Cell Biochem ; 478(1): 215-227, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35771396

RESUMO

During age-related macular degeneration (AMD), chronic inflammatory processes, possibly fueled by high glucose levels, cause a breakdown of the retinal pigment epithelium (RPE), leading to vision loss. Phloretin, a natural dihydroxychalcone found in apples, targets several anti-inflammatory signaling pathways and effectively inhibits transporter-mediated glucose uptake. It could potentially prevent inflammation and cell death of RPE cells through either direct regulation of inflammatory signaling pathways or through amelioration of high glucose levels. To test this hypothesis, ARPE-19 cells were incubated with or without phloretin for 1 h before exposure to lipopolysaccharide (LPS). Cell viability and the release of pro-inflammatory cytokines interleukin 6 (IL-6), IL-8 and vascular endothelial growth factor (VEGF) were measured. Glucose uptake was studied using isotope uptake studies. The nuclear levels of nuclear factor erythroid 2-related factor 2 (Nrf2) were determined alongside the phosphorylation levels of mitogen-activated protein kinases. Phloretin pretreatment reduced the LPS-induced release of IL-6 and IL-8 as well as VEGF. Phloretin increased intracellular levels of reactive oxygen species and nuclear translocation of Nrf2. It also inhibited glucose uptake into ARPE-19 cells and the phosphorylation of Jun-activated kinase (JNK). Subsequent studies revealed that Nrf2, but not the inhibition of glucose uptake or JNK phosphorylation, was the main pathway of phloretin's anti-inflammatory activities. Phloretin was robustly anti-inflammatory in RPE cells and reduced IL-8 secretion via activation of Nrf2 but the evaluation of its potential in the treatment or prevention of AMD requires further studies.


Assuntos
Degeneração Macular , Fator A de Crescimento do Endotélio Vascular , Humanos , Células Epiteliais/metabolismo , Glucose/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolissacarídeos/toxicidade , Degeneração Macular/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Floretina/efeitos adversos , Floretina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Pigmentos da Retina/efeitos adversos , Pigmentos da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Antioxidants (Basel) ; 11(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35883779

RESUMO

Emerging evidence suggests that the intracellular clearance system plays a vital role in maintaining homeostasis and in regulating oxidative stress and inflammation in retinal pigment epithelium (RPE) cells. Dysfunctional proteasomes and autophagy in RPE cells have been associated with the pathogenesis of age-related macular degeneration. We have previously shown that the inhibition of proteasomes using MG-132 activates the NLR family pyrin domain containing 3 (NLRP3) inflammasome in human RPE cells. However, MG-132 is a non-selective proteasome inhibitor. In this study, we used the selective proteasome inhibitor epoxomicin to study the effect of non-functional intracellular clearance systems on inflammasome activation. Our data show that epoxomicin-induced proteasome inhibition promoted both nicotinamide adenine dinucleotide phosphate oxidase and mitochondria-mediated oxidative stress and release of mitochondrial DNA to the cytosol, which resulted in potassium efflux-dependent absence in melanoma 2 (AIM2) inflammasome activation and subsequent interleukin-1ß secretion in ARPE-19 cells. The non-specific proteasome inhibitor MG-132 activated both NLRP3 and AIM2 inflammasomes and oxidative stress predominated as the activation mechanism, but modest potassium efflux was also detected. Collectively, our data suggest that a selective proteasome inhibitor is a potent inflammasome activator in human RPE cells and emphasize the role of the AIM2 inflammasome in addition to the more commonly known NLRP3 inflammasome.

5.
Immunol Res ; 70(5): 678-687, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35661979

RESUMO

In addition to hypoxia, inflammation is capable of inducing vascular endothelial growth factor (VEGF) expression in human retinal pigment epithelial (RPE) cells. Excessive levels of VEGF promote choroidal neovascularization and thereby contribute to the pathogenesis of wet age-related macular degeneration (AMD). Intravitreal anti-VEGF injections ameliorate pathological vessel neoformation in wet AMD but excessive dampening of VEGF can result in a degeneration of the RPE. In the present study, we induced VEGF production by exposing human ARPE-19 cells to the pro-inflammatory IL-1α and subsequently to hydroquinone, a component of tobacco smoke that is a major environmental risk factor for AMD. Effects were monitored by measuring the levels of VEGF and anti-angiogenic pigment epithelium-derived factor (PEDF) using an enzyme-linked immunosorbent assay (ELISA) technique. In addition, we measured the production of reactive oxygen species (ROS) using the 2',7'-dichlorofluorescin diacetate (H2DCFDA) probe and studied the effects of two anti-oxidants, ammonium pyrrolidinedithiocarbamate (APDC) and N-acetyl-cysteine (NAC), on VEGF production. Cellular and secreted VEGF as well as secreted PEDF levels were reduced at all tested hydroquinone concentrations (10, 50, or 200 µM); these effects were evident prior to any reduction of cell viability evoked by hydroquinone. Cell viability was carefully explored in our previous study and verified by microscoping in the present study. APDC further reduced the VEGF levels, whereas NAC increased them. The 50 µM concentration of hydroquinone increased ROS production in ARPE-19 cells primed with IL-1α. Hydroquinone disturbs the regulatory balance of VEGF and PEDF in inflammatory conditions. These data support the idea that hydroquinone mediates RPE degeneration by reducing VEGF levels and may predispose to dry AMD since VEGF is as well important for retinal integrity.


Assuntos
Compostos de Amônio , Poluição por Fumaça de Tabaco , Compostos de Amônio/metabolismo , Compostos de Amônio/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Células Cultivadas , Cisteína/metabolismo , Cisteína/farmacologia , Humanos , Hidroquinonas/metabolismo , Hidroquinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Pigmentos da Retina/metabolismo , Pigmentos da Retina/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Inflamm Res ; 71(7-8): 817-831, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35748903

RESUMO

BACKGROUND: Excessive exposure of the skin to UV radiation (UVR) triggers a remodeling of the immune system and leads to the photoaging state which is reminiscent of chronological aging. Over 30 years ago, it was observed that UVR induced an immunosuppressive state which inhibited skin contact hypersensitivity. METHODS: Original and review articles encompassing inflammation and immunosuppression in the photoaging and chronological aging processes were examined from major databases including PubMed, Scopus, and Google Scholar. RESULTS: Currently it is known that UVR treatment can trigger a cellular senescence and inflammatory state in the skin. Chronic low-grade inflammation stimulates a counteracting immunosuppression involving an expansion of immunosuppressive cells, e.g., regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC), and regulatory dendritic cells (DCreg). This increased immunosuppressive activity not only suppresses the function of effector immune cells, a state called immunosenescence, but it also induces bystander degeneration of neighboring cells. Interestingly, the chronological aging process also involves an accumulation of pro-inflammatory senescent cells and signs of chronic low-grade inflammation, called inflammaging. There is also clear evidence that inflammaging is associated with an increase in anti-inflammatory and immunosuppressive activities which promote immunosenescence. CONCLUSION: It seems that photoaging and normal aging evoke similar processes driven by the remodeling of the immune system. However, it is likely that there are different molecular mechanisms inducing inflammation and immunosuppression in the accelerated photoaging and the chronological aging processes.


Assuntos
Envelhecimento da Pele , Raios Ultravioleta , Envelhecimento , Humanos , Terapia de Imunossupressão , Inflamação , Pele , Raios Ultravioleta/efeitos adversos
7.
Cells ; 10(6)2021 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204067

RESUMO

Age-related macular degeneration (AMD) is a retinal disease leading to impaired vision. Cigarette smoke increases the risk for developing AMD by causing increased reactive oxygen species (ROS) production and damage in the retinal pigment epithelium (RPE). We have previously shown that the cigarette tar component hydroquinone causes oxidative stress in human RPE cells. In the present study, we investigated the propensity of hydroquinone to induce the secretion of interleukin (IL)-1ß and IL-18. The activation of these cytokines is usually regulated by the Nucleotide-binding domain, Leucine-rich repeat, and Pyrin domain 3 (NLRP3) inflammasome. ARPE-19 cells were exposed to hydroquinone, and cell viability was monitored using the lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide salt (MTT) assays. Enzyme-linked immunosorbent assays (ELISAs) were used to measure the levels of proinflammatory cytokines IL-1ß and IL-18 as well as NLRP3, caspase-1, and poly (ADP-ribose) polymerase (PARP). Hydroquinone did not change IL-1ß release but significantly increased the secretion of IL-18. Cytoplasmic NLRP3 levels increased after the hydroquinone treatment of IL-1α-primed RPE cells, but IL-18 was equally released from primed and nonprimed cells. Hydroquinone reduced the intracellular levels of PARP, which were restored by treatment with the ROS scavenger N-acetyl-cysteine (NAC). NAC concurrently reduced the NLRP3 levels but had no effect on IL-18 release. In contrast, the NADPH oxidase inhibitor ammonium pyrrolidinedithiocarbamate (APDC) reduced the release of IL-18 but had no effect on the NLRP3 levels. Collectively, hydroquinone caused DNA damage seen as reduced intracellular PARP levels and induced NLRP3-independent IL-18 secretion in human RPE cells.


Assuntos
Dano ao DNA , Hidroquinonas/farmacologia , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Humanos
8.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202702

RESUMO

Inflammation is a key underlying factor of age-related macular degeneration (AMD) and inflammasome activation has been linked to disease development. Induced pluripotent stem-cell-derived retinal pigment epithelial cells (iPSC-RPE) are an attractive novel model system that can help to further elucidate disease pathways of this complex disease. Here, we analyzed the effect of dysfunctional protein clearance on inflammation and inflammasome activation in iPSC-RPE cells generated from a patient suffering from age-related macular degeneration (AMD) and an age-matched control. We primed iPSC-RPE cells with IL-1α and then inhibited both proteasomal degradation and autophagic clearance using MG-132 and bafilomycin A1, respectively, causing inflammasome activation. Subsequently, we determined cell viability, analyzed the expression levels of inflammasome-related genes using a PCR array, and measured the levels of pro-inflammatory cytokines IL-1ß, IL-6, IL-8, and MCP-1 secreted into the medium. Cell treatments modified the expression of 48 inflammasome-related genes and increased the secretion of mature IL-1ß, while reducing the levels of IL-6 and MCP-1. Interestingly, iPSC-RPE from an AMD donor secreted more IL-1ß and expressed more Hsp90 prior to the inhibition of protein clearance, while MCP-1 and IL-6 were reduced at both protein and mRNA levels. Overall, our results suggest that cellular clearance mechanisms might already be dysfunctional, and the inflammasome activated, in cells with a disease origin.


Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamassomos/genética , Degeneração Macular/etiologia , Epitélio Pigmentado da Retina/metabolismo , Biomarcadores , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/citologia
9.
Int J Mol Sci ; 22(9)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34062977

RESUMO

Chronic inflammation has been associated with several chronic diseases, such as age-related macular degeneration (AMD). The NLRP3 inflammasome is a central proinflammatory signaling complex that triggers caspase-1 activation leading to the maturation of IL-1ß. We have previously shown that the inhibition of the chaperone protein, Hsp90, prevents NLRP3 activation in human retinal pigment epithelial (RPE) cells; these are cells which play a central role in the pathogenesis of AMD. In that study, we used a well-known Hsp90 inhibitor geldanamycin, but it cannot be used as a therapy due to its adverse effects, including ocular toxicity. Here, we have tested the effects of a novel Hsp90 inhibitor, TAS-116, on NLRP3 activation using geldanamycin as a reference compound. Using our existing protocol, inflammasome activation was induced in IL-1α-primed ARPE-19 cells with the proteasome and autophagy inhibitors MG-132 and bafilomycin A1, respectively. Intracellular caspase-1 activity was determined using a commercial caspase-1 activity kit and the FLICA assay. The levels of IL-1ß were measured from cell culture medium samples by ELISA. Cell viability was monitored by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and lactate dehydrogenase (LDH) measurements. Our findings show that TAS-116 could prevent the activation of caspase-1, subsequently reducing the release of mature IL-1ß. TAS-116 has a better in vitro therapeutic index than geldanamycin. In summary, TAS-116 appears to be a well-tolerated Hsp90 inhibitor, with the capability to prevent the activation of the NLRP3 inflammasome in human RPE cells.


Assuntos
Benzamidas/farmacologia , Células Epiteliais/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pirazóis/farmacologia , Epitélio Pigmentado da Retina/patologia , Benzoquinonas/farmacologia , Caspase 1/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Lactamas Macrocíclicas/farmacologia
10.
Sci Rep ; 11(1): 980, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441813

RESUMO

Proliferative vitreoretinopathy (PVR) with rhegmatogenous retinal detachment (RRD) is a complex inflammatory ocular disease. Statins are widely used cholesterol-lowering drugs with putative anti-inflammatory properties. In this study, we have explored their efficacy in controlling post-surgical PVR formation. Simvastatin (SIM), atorvastatin (ATV), or rosuvastatin (RSV) were added to cultures of human retinal pigment epithelial cells (ARPE-19) prior to exposure with the bacterial lipopolysaccharide (LPS), and the production of pro-inflammatory cytokines (IL-6, IL-8, MCP-1) was examined using an enzyme-linked immunosorbent assay. In addition, the concentrations of simvastatin, atorvastatin, rosuvastatin, and their metabolites were measured from the vitreal samples of 20 patients undergoing vitrectomy (16 of them receiving oral statin therapy) using an ultra-performance liquid chromatography-tandem mass spectrometer technique. All statins alleviated LPS-induced inflammation at 5 µM concentration in the ARPE-19 cell cultures. Statin levels in the vitreous samples ranged from 6 to 316 pg/mL (ca. 0.1-7 M-10). Vitreal statin concentrations were similar to the typical steady-state unbound statin concentrations in plasma, indicating that only the unbound drug distributes from the blood circulation into the vitreous. Pharmacokinetic simulations of the intravitreal delivery of statins indicate that the measured clinical statin concentrations could be maintained with existing drug delivery technologies for months. Our results suggest that intravitreal statin therapy may have the potential in alleviating the risk of post-surgical PVR.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Retina/efeitos dos fármacos , Vitreorretinopatia Proliferativa/tratamento farmacológico , Corpo Vítreo/efeitos dos fármacos , Linhagem Celular , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Retina/metabolismo , Descolamento Retiniano/tratamento farmacológico , Descolamento Retiniano/metabolismo , Vitrectomia/métodos , Vitreorretinopatia Proliferativa/metabolismo , Corpo Vítreo/metabolismo
11.
Invest Ophthalmol Vis Sci ; 61(4): 7, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32271889

RESUMO

Purpose: The cornea is continually exposed to highly energetic solar UV-B (280-320 nm). Our aim was to investigate whether UV-B triggers the activation of NLRP3 inflammasomes and the production of IL-1ß and/or IL-18 in human corneal epithelial (HCE) cells. Additionally, we studied the capability of cis-urocanic acid (cis-UCA) to prevent inflammasome activation or alleviate inflammation through other signaling pathways. Methods: HCE-2 cell line and primary HCE cells were primed using lipopolysaccharide or TNF-α. Thereafter, cells were exposed to UV-B before or after the addition of cis-UCA or caspase-1 inhibitor. Caspase-1 activity was measured from cell lysates by an enzymatic assay. IL-1ß, IL-18, IL-6, IL-8, and NLRP3 levels were detected using the ELISA method from cell culture media. Additionally, intracellular NLRP3 levels were determined by the Western blot technique, and cytotoxicity was measured by the LDH assay. Results: UV-B exposure significantly increased caspase-1 activity in TNF-α-primed HCE cells. This result was consistent with the concurrently induced IL-1ß secretion. Both caspase-1 activity and release of IL-1ß were reduced by cis-UCA. Additionally, UV-B stimulated the caspase-1-independent production of IL-18, an effect also reduced by cis-UCA. Cis-UCA decreased the release of IL-6, IL-8, and LDH in a time-dependent manner when administered to HCE-2 cells after UV-B exposure. Conclusions: Our findings demonstrate that UV-B activates inflammasomes in HCE cells. Cis-UCA can prevent the secretion of IL-1ß and IL-18 and therapeutically reduces the levels of IL-6, IL-8, and LDH in UV-B-stressed HCE cells.


Assuntos
Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/efeitos da radiação , Inflamassomos/metabolismo , Raios Ultravioleta , Ácido Urocânico/farmacologia , Western Blotting , Caspase 1/metabolismo , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Epitélio Corneano/metabolismo , Humanos , Inflamação/prevenção & controle , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
J Mol Med (Berl) ; 98(5): 633-650, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32279085

RESUMO

The endoplasmic reticulum (ER) contains stress sensors which recognize the accumulation of unfolded proteins within the lumen of ER, and subsequently these transducers stimulate the unfolded protein response (UPR). The ER sensors include the IRE1, PERK, and ATF6 transducers which activate the UPR in an attempt to restore the quality of protein folding and thus maintain cellular homeostasis. If there is excessive stress, UPR signaling generates alarmins, e.g., chemokines and cytokines, which activate not only tissue-resident immune cells but also recruit myeloid and lymphoid cells into the affected tissues. ER stress is a crucial inducer of inflammation in many pathological conditions. A chronic low-grade inflammation and cellular senescence have been associated with the aging process and many age-related diseases, such as Alzheimer's disease. Currently, it is known that immune cells can exhibit great plasticity, i.e., they are able to display both pro-inflammatory and anti-inflammatory phenotypes in a context-dependent manner. The microenvironment encountered in chronic inflammatory conditions triggers a compensatory immunosuppression which defends tissues from excessive inflammation. Recent studies have revealed that chronic ER stress augments the suppressive phenotypes of immune cells, e.g., in tumors and other inflammatory disorders. The activation of immunosuppressive network, including myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg), has been involved in the aging process and Alzheimer's disease. We will examine in detail whether the ER stress-related changes found in aging tissues and Alzheimer's disease are associated with the activation of immunosuppressive network, as has been observed in tumors and many chronic inflammatory diseases.


Assuntos
Envelhecimento/imunologia , Envelhecimento/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Estresse do Retículo Endoplasmático , Imunomodulação , Animais , Biomarcadores , Microambiente Celular/imunologia , Suscetibilidade a Doenças , Metabolismo Energético , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Resposta a Proteínas não Dobradas
13.
Front Immunol ; 11: 384, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265903

RESUMO

Myeloid cells, such as granulocytes/neutrophils and macrophages, have responsibilities that include pathogen destruction, waste material degradation, or antigen presentation upon inflammation. During persistent stress, myeloid cells can remain partially differentiated and adopt immunosuppressive functions. Myeloid-derived suppressor cells (MDSCs) are primarily beneficial upon restoring homeostasis after inflammation. Because of their ability to suppress adaptive immunity, MDSCs can also ameliorate autoimmune diseases and semi-allogenic responses, e.g., in pregnancy or transplantation. However, immunosuppression is not always desirable. In certain conditions, such as cancer or chronically inflamed tissue, MDSCs prevent restorative immune responses and thereby aggravate disease progression. Age-related macular degeneration (AMD) is the most common disease in Western countries that severely threatens the central vision of aged people. The pathogenesis of this multifactorial disease is not fully elucidated, but inflammation is known to participate in both dry and wet AMD. In this paper, we provide an overview about the potential role of MDSCs in the pathogenesis of AMD.


Assuntos
Degeneração Macular/imunologia , Imunidade Adaptativa , Neovascularização de Coroide/imunologia , Neovascularização de Coroide/fisiopatologia , Ciclo-Oxigenase 2/fisiologia , Transição Epitelial-Mesenquimal , Fibrose , Humanos , Imunidade Inata , Inflamassomos/metabolismo , Inflamação , Degeneração Macular/fisiopatologia , Células Supressoras Mieloides/imunologia , Estresse Oxidativo , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Epitélio Pigmentado da Retina/fisiologia
14.
FASEB J ; 34(5): 6437-6448, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32190930

RESUMO

DNA damage accumulates in aged postmitotic retinal pigment epithelium (RPE) cells, a phenomenon associated with the development of age-related macular degeneration. In this study, we have experimentally induced DNA damage by ultraviolet B (UVB) irradiation in interleukin-1α (IL-1α)-primed ARPE-19 cells and examined inflammasome-mediated signaling. To reveal the mechanisms of inflammasome activation, cells were additionally exposed to high levels of extracellular potassium chloride, n-acetyl-cysteine, or mitochondria-targeted antioxidant MitoTEMPO, prior to UVB irradiation. Levels of interleukin-18 (IL-18) and IL-1ß mRNAs were detected with qRT-PCR and secreted amounts of IL-1ß, IL-18, and caspase-1 were measured with ELISA. The role of nucleotide-binding domain and leucine-rich repeat pyrin containing protein 3 (NLRP3) in UVB-induced inflammasome activation was verified by using the NLRP3-specific siRNA. Reactive oxygen species (ROS) levels were measured immediately after UVB exposure using the cell-permeant 2',7'-dichlorodihydrofluorescein diacetate (H2 DCFDA) indicator, the levels of cyclobutane pyrimidine dimers were assayed by cell-based ELISA, and the extracellular levels of adenosine triphosphate (ATP) determined using a commercial bioluminescence assay. We found that pro-IL-18 was constitutively expressed by ARPE-19 cells, whereas the expression of pro-IL-1ß was inducible by IL-1α priming. UVB induced the release of mature IL-18 and IL-1ß but NLRP3 contributed only to the secretion of IL-1ß. At the mechanistic level, the release of IL-1ß was regulated by K+ efflux, whereas the secretion of IL-18 was dependent on ROS production. As well as K+ efflux, the cells released ATP following UVB exposure. Collectively, our data suggest that UVB clearly stimulates the secretion of mature IL-18 as a result of ROS induction, and this response is associated with DNA damage. Moreover, in human RPE cells, K+ efflux mediates the UVB-activated NLRP3 inflammasome signaling, leading to the processing of IL-1ß.


Assuntos
Inflamassomos/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Raios Ultravioleta , Dano ao DNA , Reparo do DNA , Humanos , Inflamassomos/imunologia , Inflamassomos/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/imunologia , Epitélio Pigmentado da Retina/efeitos da radiação , Transdução de Sinais
15.
Int J Mol Sci ; 21(6)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192228

RESUMO

Retinal pigment epithelial (RPE) cells maintain homeostasis at the retina and they are under continuous oxidative stress. Cigarette smoke is a prominent environmental risk factor for age-related macular degeneration (AMD), which further increases the oxidant load in retinal tissues. In this study, we measured oxidative stress and inflammatory markers upon cigarette smoke-derived hydroquinone exposure on human ARPE-19 cells. In addition, we studied the effects of commercial Resvega product on hydroquinone-induced oxidative stress. Previously, it was observed that Resvega induces autophagy during impaired protein clearance in ARPE-19 cells, for which it has the potential to alleviate pro-inflammatory pathways. Cell viability was determined while using the lactate dehydrogenase (LDH) and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and the cytokine levels were measured using the enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) production were measured using the 2',7'-dichlorofluorescin diacetate (H2DCFDA) probe. Hydroquinone compromised the cell viability and increased ROS production in ARPE-19 cells. Resvega significantly improved cell viability upon hydroquinone exposure and reduced the release of interleukin (IL)-8 and monocytic chemoattractant protein (MCP)-1 from RPE cells. Resvega, N-acetyl-cysteine (NAC) and aminopyrrolidine-2,4-dicarboxylic acid (APDC) alleviated hydroquinone-induced ROS production in RPE cells. Collectively, our results indicate that hydroquinone induces cytotoxicity and increases oxidative stress through NADPH oxidase activity in RPE cells, and resveratrol-containing Resvega products prevent those adverse effects.


Assuntos
Hidroquinonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Biomarcadores , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo
16.
J Mol Med (Berl) ; 97(8): 1049-1064, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31129755

RESUMO

AMP-activated protein kinase (AMPK) has a crucial role not only in the regulation of tissue energy metabolism but it can also control immune responses through its cooperation with immune signaling pathways, thus affecting immunometabolism and the functions of immune cells. It is known that AMPK signaling inhibits the activity of the NF-κB system and thus suppresses pro-inflammatory responses. Interestingly, AMPK activation can inhibit several major immune signaling pathways, e.g., the JAK-STAT, NF-κB, C/EBPß, CHOP, and HIF-1α pathways, which induce the expansion and activation of myeloid-derived suppressor cells (MDSC). MDSCs induce an immunosuppressive microenvironment in tumors and thus allow the escape of tumor cells from immune surveillance. Chronic inflammation has a key role in the expansion and activation of MDSCs in both tumors and inflammatory disorders. The numbers of MDSCs also significantly increase during the aging process concurrently with the immunosenescence associated with chronic low-grade inflammation. Increased fatty acid oxidation and lactate produced by aerobic glycolysis are important immunometabolic enhancers of MDSC functions. However, it seems that AMPK signaling regulates the functions of MDSCs in a context-dependent manner. Currently, the activators of AMPK signaling are promising drug candidates for cancer therapy and possibly for the extension of healthspan and lifespan. We will describe in detail the AMPK-mediated regulation of the signaling pathways controlling the expansion and activation of immunosuppressive MDSCs. We will propose that the beneficial effects mediated by AMPK activation, e.g., in cancers and the aging process, could be induced by the inhibition of MDSC functions.


Assuntos
Proteínas Quinases Ativadas por AMP , Envelhecimento , Células Supressoras Mieloides , Proteínas de Neoplasias , Neoplasias , Transdução de Sinais , Microambiente Tumoral/imunologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/imunologia , Envelhecimento/genética , Envelhecimento/imunologia , Envelhecimento/patologia , Animais , Glicólise/genética , Glicólise/imunologia , Humanos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/patologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
17.
Int J Mol Sci ; 20(4)2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791639

RESUMO

Inefficient removal of dying retinal pigment epithelial (RPE) cells by professional phagocytes can result in debris formation and development of age-related macular degeneration (AMD). Chronic oxidative stress and inflammation play an important role in AMD pathogenesis. Only a few well-established in vitro phagocytosis assay models exist. We propose human embryonic stem cell-derived-RPE cells as a new model for studying RPE cell removal by professional phagocytes. The characteristics of human embryonic stem cells-derived RPE (hESC-RPE) are similar to native RPEs based on their gene and protein expression profile, integrity, and barrier properties or regarding drug transport. However, no data exist about RPE death modalities and how efficiently dying hESC-RPEs are taken upby macrophages, and whether this process triggers an inflammatory responses. This study demonstrates hESC-RPEs can be induced to undergo anoikis or autophagy-associated cell death due to extracellular matrix detachment or serum deprivation and hydrogen-peroxide co-treatment, respectively, similar to primary human RPEs. Dying hESC-RPEs are efficiently engulfed by macrophages which results in high amounts of IL-6 and IL-8 cytokine release. These findings suggest that the clearance of anoikic and autophagy-associated dying hESC-RPEs can be used as a new model for investigating AMD pathogenesis or for testing the in vivo potential of these cells in stem cell therapy.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Autofagia , Biomarcadores , Diferenciação Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Imunofenotipagem , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Degeneração Macular , Estresse Oxidativo , Fagocitose/imunologia
18.
Cytokine ; 116: 70-77, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30685605

RESUMO

Age-related macular degeneration (AMD) is a complex eye disease in which decline in autophagy leads to the accumulation of sequestosome 1/p62 (SQSTM1/p62)-labeled waste material inside the retinal pigment epithelial (RPE) cells, and the condition results in activation of the inflammasome signaling and IL-1ß secretion. Here, we have studied the role of SQSTM1/p62 in the production of IL-6, IL-8, and MCP-1 in the presence or absence of IL-1ß. SQSTM1/p62 was either overexpressed or silenced in ARPE-19 cells, which were then exposed to IL-1ß. Alternatively, bafilomycin A was used to demonstrate the functional decline of autophagy with increased SQSTM1/p62 levels. The protein concentration of SQSTM1/p62 was measured using the western blot technique, and interleukin levels were determined by ELISA. In IL-1ß-loaded RPE cells, SQSTM1/p62 depletion and overexpression increased the production of MCP-1 and IL-8, respectively. Neither knock-down nor overexpression of SQSTM1/p62 induced the release of IL-6. Our data suggest that SQSTM1/p62 is a significant factor in inflammatory responses, especially following the inflammasome activation.


Assuntos
Células Epiteliais/metabolismo , Interleucina-1beta/metabolismo , Degeneração Macular/patologia , Epitélio Pigmentado da Retina/fisiopatologia , Proteína Sequestossoma-1/metabolismo , Linhagem Celular , Quimiocina CCL2/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-8/metabolismo , Macrolídeos/farmacologia , Epitélio Pigmentado da Retina/citologia
19.
J Mol Med (Berl) ; 97(3): 341-354, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30617853

RESUMO

ATP and adenosine are important signaling molecules involved in vascular remodeling, retinal function, and neurovascular coupling in the eye. Current knowledge on enzymatic pathways governing the duration and magnitude of ocular purinergic signaling is incompletely understood. By employing sensitive analytical assays, this study dissected ocular purine homeostasis as a complex and coordinated network. Along with previously characterized ecto-5'-nucleotidase/CD73 and adenylate kinase activities, other enzymes have been identified in vitreous fluids, including nucleoside triphosphate diphosphohydrolase (NTPDase), adenosine deaminase, and alkaline phosphatase. Strikingly, activities of soluble adenylate kinase, adenosine deaminase, ecto-5'-nucleotidase/CD73, and alkaline phosphatase, as well as intravitreal concentrations of ATP and ADP, were concurrently upregulated in patients suffering from diabetic retinopathy (DR) with non-clearing vitreous hemorrhage (VH), when compared to DR eyes without VH and control eyes operated due to macular hole or pucker. Additional histochemical analysis revealed selective distribution of key ecto-nucleotidases (NTPDase1/CD39, NTPDase2, ecto-5'-nucleotidase/CD73, and alkaline phosphatase) in the human sensory neuroretina and optic nerve head, and also in pathological neofibrovascular tissues surgically excised from patients with advanced proliferative DR. Collectively, these data provide evidence for specific hemorrhage-related shifts in purine homeostasis in DR eyes from the generation of anti-inflammatory adenosine towards a pro-inflammatory and pro-angiogenic ATP-regenerating phenotype. In the future, identifying the exact mechanisms by which a broad spectrum of soluble and membrane-bound enzymes coordinately regulates ocular purine levels and the further translation of purine-converting enzymes as potential therapeutic targets in the treatment of proliferative DR and other vitreoretinal diseases will be an area of intense interest. KEY MESSAGES: NTPDase, alkaline phosphatase, and adenosine deaminase circulate in human vitreous. Purinergic enzymes are up-regulated in diabetic eyes with vitreous hemorrhage. Soluble adenylate kinase maintains high ATP levels in diabetic retinopathy eyes. Ecto-nucleotidases are co-expressed in the human retina and optic nerve head. Alkaline phosphatase is expressed on neovascular tissues excised from diabetic eyes.


Assuntos
Trifosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Retinopatia Diabética/metabolismo , Nucleotidases/metabolismo , Hemorragia Vítrea/metabolismo , Adenosina/metabolismo , Difosfato de Adenosina/metabolismo , Adulto , Idoso , Fosfatase Alcalina/metabolismo , Olho/metabolismo , Feminino , Humanos , Inflamação , Masculino , Pessoa de Meia-Idade
20.
Ageing Res Rev ; 48: 1-10, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30248408

RESUMO

A chronic low-grade inflammation is one of the hallmarks of the aging process. This gradually augmenting inflammatory state has been termed inflammaging. Inflammaging is associated with increased myelopoiesis in the bone marrow. This myelopoiesis-biased process increases the generation not only of mature myeloid cells, e.g. monocytes, macrophages, and neutrophils, but also immature myeloid progenitors and myeloid-derived suppressor cells (MDSCs). It is known that the aging process is associated with a significant increase in the presence of MDSCs in the bone marrow, blood, spleen, and peripheral lymph nodes. Consequently, MDSCs will become recruited into inflamed tissues where they suppress acute inflammatory responses and trigger the resolution of inflammation. However, if the perpetrator cannot be eliminated, the long-term presence of MDSCs suppresses the host's immune defence and increases the susceptibility to infections and tumorigenesis. Chronic immunosuppression also impairs the clearance of waste products and dead cells, impairs energy metabolism, and disturbs tissue proteostasis. This immunosuppressive state is reminiscent of the immunosenescence observed in inflammaging. It seems that proinflammatory changes in tissues with aging stimulate the myelopoietic production of MDSCs which subsequently induces immunosenescence and maintains the chronic inflammaging process. We will briefly describe the functions of MDSCs and then examine in detail how inflammaging enhances the generation MDSCs and how MDSCs are involved in the control of immunosenescence occurring in inflammaging.


Assuntos
Envelhecimento/imunologia , Envelhecimento/metabolismo , Imunossenescência/fisiologia , Células Supressoras Mieloides/fisiologia , Animais , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA