Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 12(8): 3628-3636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664082

RESUMO

Rationale: Predicting tumor responses to adjuvant therapies can potentially help guide treatment decisions and improve patient survival. Currently, tumor pathology, histology, and molecular profiles are being integrated into personalized profiles to guide therapeutic decisions. However, it remains a grand challenge to evaluate tumor responses to immunotherapy for personalized medicine. Methods: We present a microfluidics-based mini-tumor chip approach to predict tumor responses to cancer immunotherapy in a preclinical model. By uniformly infusing dissociated tumor cells into isolated microfluidic well-arrays, 960 mini-tumors could be uniformly generated on-chip, with each well representing the ex vivo tumor niche that preserves the original tumor cell composition and dynamic cell-cell interactions and autocrine/paracrine cytokines. Results: By incorporating time-lapse live-cell imaging, our mini-tumor chip allows the investigation of dynamic immune-tumor interactions as well as their responses to cancer immunotherapy (e.g., anti-PD1 treatment) in parallel within 36 hours. Additionally, by establishing orthotopic breast tumor models with constitutive differential PD-L1 expression levels, we showed that the on-chip interrogation of the primary tumor's responses to anti-PD1 as early as 10 days post tumor inoculation could predict the in vivo tumors' responses to anti-PD1 at the endpoint of day 24. We also demonstrated the application of this mini-tumor chip to interrogate on-chip responses of primary tumor cells isolated from primary human breast and renal tumor tissues. Conclusions: Our approach provides a simple, quick-turnaround solution to measure tumor responses to cancer immunotherapy.


Assuntos
Imunoterapia , Neoplasias , Terapia Combinada , Humanos , Imunoterapia/métodos , Microfluídica , Neoplasias/terapia , Medicina de Precisão/métodos , Microambiente Tumoral
2.
Adv Sci (Weinh) ; 9(22): e2201478, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35611994

RESUMO

Tumor microenvironment crosstalk, in particular interactions between cancer cells, T cells, and myeloid-derived suppressor cells (MDSCs), mediates tumor initiation, progression, and response to treatment. However, current patient-derived models such as tumor organoids and 2D cultures lack some essential niche cell types (e.g., MDSCs) and fail to model complex tumor-immune interactions. Here, the authors present the novel acoustically assembled patient-derived cell clusters (APCCs) that can preserve original tumor/immune cell compositions, model their interactions in 3D microenvironments, and test the treatment responses of primary tumors in a rapid, scalable, and user-friendly manner. By incorporating a large array of 3D acoustic trappings within the extracellular matrix, hundreds of APCCs can be assembled within a petri dish within 2 min. Moreover, the APCCs can preserve sensitive and short-lived (≈1 to 2-day lifespan in vivo) tumor-induced MDSCs and model their dynamic suppression of T cell tumor toxicity for up to 24 h. Finally, using the APCCs, the authors succesully model the combinational therapeutic effect of a multi-kinase inhibitor targeting MDSCs (cabozantinib) and an anti-PD-1 immune checkpoint inhibitor (pembrolizumab). The novel APCCs may hold promising potential in predicting treatment response for personalized cancer adjuvant therapy as well as screening novel cancer immunotherapy and combinational therapy.


Assuntos
Células Supressoras Mieloides , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia , Células Supressoras Mieloides/metabolismo , Neoplasias/terapia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA