Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Reg Anesth Pain Med ; 48(9): 454-461, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37085287

RESUMO

INTRODUCTION: Erector spinae plane blocks have become popular for thoracic surgery. Despite a theoretically favorable safety profile, intercostal spread occurs and systemic toxicity is possible. Pharmacokinetic data are needed to guide safe dosing. METHODS: Fifteen patients undergoing thoracic surgery received continuous erector spinae plane blocks with ropivacaine 150 mg followed by subsequent boluses of 40 mg every 6 hours and infusion of 2 mg/hour. Arterial blood samples were obtained over 12 hours and analyzed using non-linear mixed effects modeling, which allowed for conducting simulations of clinically relevant dosing scenarios. The primary outcome was the Cmax of ropivacaine in erector spinae plane blocks. RESULTS: The mean age was 66 years, mean weight was 77.5 kg, and mean ideal body weight was 60 kg. The mean Cmax was 2.5 ±1.1 mg/L, which occurred at a median time of 10 (7-47) min after initial injection. Five patients developed potentially toxic ropivacaine levels but did not experience neurological symptoms. Another patient reported transient neurological toxicity symptoms. Our data suggested that using a maximum ropivacaine dose of 2.5 mg/kg based on ideal body weight would have prevented all toxicity events. Simulation predicted that reducing the initial dose to 75 mg with the same subsequent intermittent bolus dosing would decrease the risk of toxic levels to <1%. CONCLUSION: Local anesthetic systemic toxicity can occur with erector spinae plane blocks and administration of large, fixed doses of ropivacaine should be avoided, especially in patients with low ideal body weights. Weight-based ropivacaine dosing could reduce toxicity risk. TRIAL REGISTRATION NUMBER: NCT04807504; clinicaltrials.gov.


Assuntos
Bloqueio Nervoso , Humanos , Idoso , Ropivacaina , Bloqueio Nervoso/efeitos adversos , Dor Pós-Operatória/diagnóstico , Anestésicos Locais/efeitos adversos , Manejo da Dor
2.
Pharmaceutics ; 15(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37111787

RESUMO

Tumor hypoxia (oxygen deficiency) is a major contributor to radiotherapy resistance. Ultrasound-sensitive microbubbles containing oxygen have been explored as a mechanism for overcoming tumor hypoxia locally prior to radiotherapy. Previously, our group demonstrated the ability to encapsulate and deliver a pharmacological inhibitor of tumor mitochondrial respiration (lonidamine (LND)), which resulted in ultrasound-sensitive microbubbles loaded with O2 and LND providing prolonged oxygenation relative to oxygenated microbubbles alone. This follow-up study aimed to evaluate the therapeutic response to radiation following the administration of oxygen microbubbles combined with tumor mitochondrial respiration inhibitors in a head and neck squamous cell carcinoma (HNSCC) tumor model. The influences of different radiation dose rates and treatment combinations were also explored. The results demonstrated that the co-delivery of O2 and LND successfully sensitized HNSCC tumors to radiation, and this was also enhanced with oral metformin, significantly slowing tumor growth relative to unsensitized controls (p < 0.01). Microbubble sensitization was also shown to improve overall animal survival. Importantly, effects were found to be radiation dose-rate-dependent, reflecting the transient nature of tumor oxygenation.

3.
Int J Pharm ; 625: 122072, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35932933

RESUMO

Prior work has shown that microbubble-assisted delivery of oxygen improves tumor oxygenation and radiosensitivity, albeit over a limited duration. Lonidamine (LND) has been investigated because of its ability to stimulate glycolysis, lactate production, inhibit mitochondrial respiration, and inhibit oxygen consumption rates in tumors but suffers from poor bioavailability. The goal of this work was to characterize LND-loaded oxygen microbubbles and assess their ability to oxygenate a human head and neck squamous cell carcinoma (HNSCC) tumor model, while also assessing LND biodistribution. In tumors treated with surfactant-shelled microbubbles with oxygen core (SE61O2) and ultrasound, pO2 levels increased to a peak 19.5 ± 9.7 mmHg, 50 s after injection and returning to baseline after 120 s. In comparison, in tumors treated with SE61O2/LND and ultrasound, pO2 levels showed a peak increase of 29.0 ± 8.3 mmHg, which was achieved 70 s after injection returning to baseline after 300 s (p < 0.001). The co-delivery of O2andLNDvia SE61 also showed an improvement of LND biodistribution in both plasma and tumor tissues (p < 0.001). In summary, ultrasound-sensitive microbubbles loaded with O2 and LND provided prolonged oxygenation relative to oxygenated microbubbles alone, as well as provided an ability to locally deliver LND, making them more appropriate for clinical translation.


Assuntos
Microbolhas , Neoplasias , Humanos , Indazóis , Oxigênio , Distribuição Tecidual
4.
Polymers (Basel) ; 14(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35458319

RESUMO

Co-delivery of cancer therapeutics improves efficacy and encourages synergy, but delivery faces challenges, including multidrug resistance and spatiotemporal distribution of therapeutics. To address these, we added paclitaxel to previously developed acoustically labile, oxygen-core, surfactant-stabilized microbubbles encapsulating lonidamine, with the aim of developing an agent containing both a therapeutic gas and two drugs acting in combination. Upon comparison of unloaded, single-loaded, and dual-loaded microbubbles, size (~1.7 µm) and yield (~2 × 109 microbubbles/mL) (~1.7) were not statistically different, nor were acoustic properties (maximum in vitro enhancements roughly 18 dB, in vitro enhancements roughly 18 dB). Both drugs encapsulated above required doses calculated for head and neck squamous cell carcinoma, the cancer of choice. Interestingly, paclitaxel encapsulation efficiency increased from 1.66% to 3.48% when lonidamine was included. During preparation, the combination of single drug-loaded micelles gave higher encapsulation (µg drug/g microbubbles) than micelles loaded with either drug alone (lonidamine, 104.85 ± 22.87 vs. 87.54 ± 16.41), paclitaxel (187.35 ± 8.38 vs. 136.51 ± 30.66). In vivo intravenous microbubbles produced prompt ultrasound enhancement within tumors lasting 3-5 min, indicating penetration into tumor vasculature. The ability to locally destroy the microbubble within the tumor vasculature was confirmed using a series of higher intensity ultrasound pulses. This ability to locally destroy microbubbles shows therapeutic promise that warrants further investigation.

5.
Res Pharm Sci ; 15(4): 312-322, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33312209

RESUMO

BACKGROUND AND PURPOSE: Lonidamine is a hexokinase II inhibitor, works as an anticancer molecule, and is extensively explored in clinical trials. Limited information prevails about the stability-indicating methods which could determine the forced degradation of lonidamine under stressed conditions. Hence, we report the use of a rapid, sensitive, reproducible, and highly accurate liquid chromatography and mass spectrometry method to analyze lonidamine degradation. EXPERIMENTAL APPROACH: The Xbridge BEH shield reverse phase C18 column (2.5 µm, 4.6 × 75 mm) using isocratic 50:50 water: acetonitrile with 0.1% formic acid can detect lonidamine with help of mass spectrometer in tandem with an ultraviolet (UV) detector at 260 nm wavelength. FINDINGS/ RESULTS: A linear curve with r2 > 0.99 was obtained for tandem liquid chromatography-mass spectrometry (LC-MS)-UV based detections. This study demonstrated (in the present set up of isocratic elution) that LC-MS based detection has a relatively high sensitivity (S/N (10 ng/mL): 220 and S/N (20 ng/mL): 945) and accuracy at lower detection and quantitation levels, respectively. In addition to developing the LC-MS method, we also report that the current method is stability-indicating and shows that lonidamine gets degraded over time under all three stress conditions; acidic, basic, and oxidative. CONCLUSION AND IMPLICATIONS: LC-MS based quantitation of lonidamine proved to be a better method compared to high-performance liquid chromatography (HPLC)-UV detections for mapping lonidamine degradation. This is the first report on the stability-indicating method for studying the forced degradation of lonidamine using LC-MS method.

6.
Cancer Metab ; 8: 19, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974013

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant forms of cancer. Lack of effective treatment options and drug resistance contributes to the low survival among PDAC patients. In this study, we investigated the metabolic alterations in pancreatic cancer cells that do not respond to the EGFR inhibitor erlotinib. We selected erlotinib-resistant pancreatic cancer cells from MiaPaCa2 and AsPC1 cell lines. Metabolic profiling of erlotinib-resistant cells revealed a significant downregulation of glycolytic activity and reduced level of glycolytic metabolites compared to the sensitive cells. The resistant cells displayed elevated expression of the pentose phosphate pathway (PPP) enzymes involved in ROS regulation and nucleotide biosynthesis. The enhanced PPP elevated cellular NADPH/NADP+ ratio and protected the cells from reactive oxygen species (ROS)-induced damage. Inhibition of PPP using 6-aminonicotinamide (6AN) elevated ROS levels, induced G1 cell cycle arrest, and sensitized resistant cells to erlotinib. Genetic studies identified elevated PPP enzyme glucose-6-phosphate dehydrogenase (G6PD) as an important contributor to erlotinib resistance. Mechanistically, our data showed that upregulation of inhibitor of differentiation (ID1) regulates G6PD expression in resistant cells thus contributing to altered metabolic phenotype and reduced response to erlotinib. Together, our results highlight an underlying role of tumor metabolism in PDAC drug response and identify G6PD as a target to overcome drug resistance.

7.
Polymers (Basel) ; 12(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796651

RESUMO

Drugs targeting heat shock protein 90 (Hsp90) have been extensively explored for their anticancer potential in advanced clinical trials. Nanoformulations have been an important drug delivery platform for the anticancer molecules like Hsp90 inhibitors. It has been reported that bovine serum albumin (BSA) nanoparticles (NPs) serve as carriers for anticancer drugs, which have been extensively explored for their therapeutic efficacy against cancers. Luminespib (also known as NVP-AUY922) is a new generation Hsp90 inhibitor that was introduced recently. It is one of the most studied Hsp90 inhibitors for a variety of cancers in Phase I and II clinical trials and is similar to its predecessors such as the ansamycin class of molecules. To our knowledge, nanoformulations for luminespib remain unexplored for their anticancer potential. In the present study, we developed aqueous dispensable BSA NPs for controlled delivery of luminespib. The luminespib-loaded BSA NPs were characterized by SEM, TEM, FTIR, XPS, UV-visible spectroscopy and fluorescence spectroscopy. The results suggest that luminespib interacts by non-covalent reversible interactions with BSA to form drug-loaded BSA NPs (DNPs). Our in vitro evaluations suggest that DNP-based aqueous nanoformulations can be used in both pancreatic (MIA PaCa-2) and breast (MCF-7) cancer therapy.

8.
Cancers (Basel) ; 12(2)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050636

RESUMO

Uveal melanoma (UM) is the most common primary eye malignancy in adults and up to 50% of patients subsequently develop systemic metastasis. Metastatic uveal melanoma (MUM) is highly resistant to immunotherapy. One of the mechanisms for resistance would be the immune-suppressive tumor microenvironment. Here, we have investigated the role of tryptophan 2,3-dioxygenase (TDO) in UM. Both TDO and indoleamine 2,3-dioxygenase (IDO) catalyze tryptophan and produce kynurenine, which could cause inhibition of T cell immune responses. We first studied the expression of TDO on tumor tissue specimens obtained from UM hepatic metastasis. High expression of TDO protein was confirmed in all hepatic metastasis. TDO was positive in both normal hepatocytes and the tumor cells with relatively higher expression in tumor cells. On the other hand, IDO protein remained undetectable in all of the MUM specimens. UM cell lines established from metastasis also expressed TDO protein and increasing kynurenine levels were detected in the supernatant of MUM cell culture. In TCGA database, higher TDO2 expression in primary UM significantly correlated to BAP1 mutation and monosomy 3. These results indicate that TDO might be one of the key mechanisms for resistance to immunotherapy in UM.

9.
Drug Discov Ther ; 12(3): 142-153, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29998995

RESUMO

D-cycloserine (DCS), a partial agonist at N-methyl-D-aspartate (NMDA) receptors, is used as an enhancer of exposure therapy for anxiety disorders. The purpose of the present study was to investigate the feasibility of using polymeric gels to increase the viscosity of the formulation and thereby increase the nasal residence time and sustained release of DCS in vitro. Hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC), and methyl cellulose (MC) were prepared at concentrations of 0.5 to 5% w/v. Pluronic F-127 (PF-127) was prepared at concentrations of 15 to 35% w/v. pH, viscosity and in vitro DCS release behavior of the formulated gels were analyzed. All four gels that were tested, demonstrated sustained DCS release behavior over a 24-hour period, but with different rates. Based on the results of this study, HPMC, HPC, MC, and PF-127 are capable of increasing the viscosity of nasal gel formulations and of releasing DCS in sustained manner. Therefore, these polymeric gels can be suitable carriers for DCS nasal gel formulation.


Assuntos
Antimetabólitos/administração & dosagem , Transtornos de Ansiedade/terapia , Ciclosserina/administração & dosagem , Géis , Terapia Implosiva/métodos , Polímeros , Receptores de N-Metil-D-Aspartato/agonistas , Administração Intranasal , Linhagem Celular Tumoral , Celulose/análogos & derivados , Cromatografia Líquida de Alta Pressão , Sistemas de Liberação de Medicamentos , Agonismo Parcial de Drogas , Impedância Elétrica , Excipientes , Humanos , Concentração de Íons de Hidrogênio , Derivados da Hipromelose , Técnicas In Vitro , Metilcelulose , Cavidade Nasal , Mucosa Nasal , Poloxâmero , Viscosidade
10.
J Pharm Sci ; 98(8): 2573-80, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19266563

RESUMO

Genetically modified Lactococcus lactis (L. lactis), a probiotic bacterium, able to secrete beta-lactamase (29 kDa), was used as a vector for the oral delivery of beta-lactamase to the rats. Three different doses of L. lactis were administered to the rats, and the resulted beta-lactamase oral bioavailability was studied, and compared to the solution form. The oral administration of 1.2 x 10(7), 3 x 10(7), and 8 x 10(7) colony-forming units of L. lactis led to 145, 209, and 364 mU of beta-lactamase absorbed, and the corresponding bioavailability was 8.7%, 15.5%, and 20.8% based on the in vitro production of beta-lactamase by L. lactis. The oral administration of 504 mU and 1008 mU beta-lactamase free solution resulted in 30 and 47 mU absorbed, a bioavailability of 5.9% and 4.7%, respectively. L. lactis significantly (p < 0.01) increased the oral bioavailability compared to the free solution form. A significant (p < 0.01) increase in the MAT value as compared to the solution, demonstrated that L. lactis can be used as a sustained delivery system. In conclusion, there is a linear relationship between L. lactis dose and these absorption PK parameters within L. lactis dose range of the current study.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Absorção Intestinal/efeitos dos fármacos , Lactococcus lactis/genética , Peptídeos/administração & dosagem , Peptídeos/genética , Engenharia de Proteínas/métodos , Administração Oral , Animais , Relação Dose-Resposta a Droga , Feminino , Absorção Intestinal/fisiologia , Peptídeos/farmacocinética , Probióticos/administração & dosagem , Ratos , Ratos Sprague-Dawley , beta-Lactamases/administração & dosagem , beta-Lactamases/genética
11.
Int J Pharm ; 313(1-2): 29-35, 2006 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-16488095

RESUMO

Lactococcus lactis subsp. lactis transformed with Plasmid ss80 (encoding the production and secretion of TEM beta-lactamase) was used for the delivery of beta-lactamase through the C-33A (cervix cell) monolayer. The viability of the cell monolayers co-cultured with L. lactis was examined by the trypan blue exclusion method. The integrity of the monolayers was monitored by measuring the transport of mannitol and propranolol as well as the transepithelial electrical resistance. The transport rate of beta-lactamase through C-33A monolayer was increased by four- and nine-folds (p < 0.05) at the first hour by the transformed L. lactis compared to the free solution with or without presence of the untransformed L. lactis, respectively. This increase was gradually diminished after the 1st hour: it became 30 and 50% (p < 0.05) at 10 h. The presence of the untransformed L. lactis with free solution delivery also increased the transport rate by 100% at 1 h (p < 0.05) and 15% at 10h (p>0.05). The increase in transport rate by the transformed L. lactis is most probably due to the concentrate of beta-lactamase on C-33A monolayer. When co-cultured with the L. lactis, the C-33A cell viability and the monolayer TEER remained steady for 10 h. The presence of L. lactis did not change the transport of propranolol and mannitol through the monolayers. In conclusion, the transformed L. lactis significantly (p < 0.05) increased the transport of beta-lactamase through the cervical monolayers, indicating probiotic bacteria delivery may be a promising approach for protein delivery through the vagina.


Assuntos
Colo do Útero/metabolismo , Lactococcus lactis/genética , Transformação Bacteriana , beta-Lactamases/metabolismo , Aderência Bacteriana , Linhagem Celular Tumoral , Colo do Útero/citologia , Células Epiteliais/metabolismo , Feminino , Humanos , Lactococcus lactis/metabolismo , Fatores de Tempo , beta-Lactamases/genética
12.
Int J Pharm ; 286(1-2): 117-24, 2004 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-15501008

RESUMO

Feasibility to use probiotic bacteria as a living protein delivery system through oral route was assessed in vitro. Lactococcus lactis transformed with a plasmid to express and secret beta-lactamase was used to deliver beta-lactamase through Caco-2 monolayer, an intestine epithelium. Transport of beta-lactamase through Caco-2 monolayer was carried out in the transwells. The viability and integrity of the cell monolayers co-cultured with L. lactis was examined by trypan blue exclusion method and by measuring the transport of mannitol and propranolol as well as the transepithelial electrical resistance (TEER). Results show that it is feasible to use cell culture technique to evaluate the drug delivery by normal flora. The transport rate of beta-lactamase when delivered by L. lactis was 2.0 +/- 0.1 x 10(-2)h(-1) (n = 9) and through free solution form was 1.0 +/- 0.1 x 10(-2)h-1. When co-cultured with L. lactis, Caco-2 cell viability decreased to 98, 96, and 94% at 6, 8, and 10h, respectively. Transport of mannitol through Caco-2 cell monolayer was significantly increased and the transport of propranolol through Caco-2 cell monolayer was significantly decreased in the presence of L. lactis. Increase in the amount of protein delivered is probably due to the concentrate of the protein by L. lactis on the monolayer (absorption surface) and the opening of the tight junction of Caco-2 monolayer by L. lactis.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Trato Gastrointestinal/microbiologia , Lactococcus lactis/metabolismo , Administração Oral , Área Sob a Curva , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/química , Proteínas de Bactérias/farmacocinética , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Técnicas de Cocultura/métodos , Meios de Cultura/química , Meios de Cultura/classificação , Meios de Cultura/farmacologia , Impedância Elétrica , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Trato Gastrointestinal/fisiologia , Humanos , Lactococcus lactis/genética , Manitol/metabolismo , Manitol/farmacologia , Medicina Tradicional , Plasmídeos/genética , Propranolol/metabolismo , Propranolol/farmacologia , Trítio , Azul Tripano , beta-Lactamases/química , beta-Lactamases/metabolismo , beta-Lactamases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA