Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Glob Antimicrob Resist ; 34: 43-45, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37356664

RESUMO

OBJECTIVES: Linezolid is an antibiotic used to treat infectious diseases caused by vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. Recently, Enterococcus Spp.-carrying mobile linezolid resistance genes were reported. Herein, we report the complete genome sequence of Enterococcus raffinosus JARB-HU0741, which was isolated from a bile sample of a patient in Japan on May 5, 2021, and carries a linezolid resistance gene, cfr(B). Nevertheless, this isolate was susceptible to linezolid. METHODS: Whole-genome sequencing was performed using HiSeq X FIVE (Illumina) and GridION (Oxford Nanopore Technologies). The sequence reads were assembled using Unicycler v0.4.8, and the complete genome was annotated using DFAST v1.2.18. Antimicrobial resistance genes were detected with Abricate v1.0.1, using the ResFinder database. The minimum inhibitory concentrations (MICs) were determined using broth microdilution and interpreted according to the guidelines of the Clinical and Laboratory Standards Institute. RESULTS: E. raffinosus JARB-HU0741 contained a 3 248 808-bp chromosome and a 1 156 277-bp megaplasmid. cfr(B) was present in the Tn6218-like transposon, which was inserted into a gene encoding a PRD domain-containing protein present in the megaplasmid, but the isolate was susceptible to linezolid (MIC, 0.5 µg/mL). The Tn6218-like transposon was similar to the Tn6218 of Clostridioides difficile Ox3196 and the Tn6218-like transposon of Enterococcus faecium UW11733; however, three genes encoding a topoisomerase, an S-adenosylmethionine-dependent methyltransferase, and a TetR family transcriptional regulator were present in the previous Tn6218- or Tn6218-like transposon. CONCLUSION: This is the first report of the complete genome sequence of E. raffinosus carrying cfr(B). E. raffinosus carrying cfr(B) without linezolid resistance poses a threat, as it could serve as a reservoir for mobile linezolid resistance genes.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Humanos , Linezolida/farmacologia , Japão , Bile , Enterococcus/genética
2.
Microbiol Immunol ; 66(3): 145-156, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34888908

RESUMO

Streptococcus mutans, a cariogenic pathogen, adheres to the tooth surface and forms a biofilm. Bacterial cell surface proteins are associated with adherence to substrates. Sortase A (SrtA) mediates the localization of proteins with an LPXTG motif-containing proteins to the cell surface by covalent binding to peptidoglycan. In S. mutans UA159, six SrtA-dependent proteins, SpaP, WapA, WapE, DexA, FruA, and GbpC, were identified. Although some of these proteins were characterized, a comprehensive analysis of the six proteins has not been reported. In this study, we constructed mutants deficient in each of these proteins and the SrtA-deficient mutant. The SrtA-deficient mutant showed drastically decreased binding to salivary components, biofilm formation, bacterial coaggregation activity, hydrophobicity, and cellular matrix binding (collagen type I, fibronectin, and laminin). The SpaP-deficient mutant showed significantly reduced binding to salivary components and partially increased coaggregation with Porphyromonas gingivalis, and decreased hydrophobicity, and collagen binding. The WapA-deficient mutant showed slightly decreased coaggregation with Fusobacterium nucleatum. Although the SrtA-deficient mutant showed drastically altered phenotypes, all SrtA-dependent protein-deficient mutants, except the SpaP-deficient mutant, did not show considerable alterations in binding to salivary components. These results indicate that the six proteins may coordinately contribute to these activities. In addition, using genomic data of 125 S. mutans strains, the amino acid sequences of each surface protein were compared and many variations were found among strains, which may affect the phenotype of cell surface proteins in S. mutans.


Assuntos
Aminoaciltransferases , Streptococcus mutans , Aminoaciltransferases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Proteínas de Membrana , Streptococcus mutans/genética , Streptococcus mutans/metabolismo
3.
Infect Immun ; 81(6): 1870-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23439307

RESUMO

Staphylococcus aureus is a major human pathogen that can colonize the nasal cavity, skin, intestine, and oral cavity as a commensal bacterium. gp340, also known as DMBT1 (deleted in malignant brain tumors 1), is associated with epithelial differentiation and innate immunity. In the oral cavity, gp340 induces salivary aggregation with several oral bacteria and promotes bacterial adhesion to tissues such as the teeth and mucosa. S. aureus is often isolated from the oral cavity, but the mechanism underlying its persistence in the oral cavity remains unclear. In this study, we investigated the interaction between S. aureus and gp340 and found that S. aureus interacts with saliva- and gp340-coated resin. We then identified the S. aureus factor(s) responsible for binding to gp340. The cell surface protein SasA, which is rich in basic amino acids (BR domain) at the N terminus, was responsible for binding to gp340. Inactivation of the sasA gene resulted in a significant decrease in S. aureus binding to gp340-coated resin. Also, recombinant SasA protein (rSasA) showed binding affinity to gp340, which was inhibited by the addition of N-acetylneuraminic acid. Surface plasmon resonance analysis showed that rSasA significantly bound to the NeuAcα(2-3)Galß(1-4)GlcNAc structure. These results indicate that SasA is responsible for binding to gp340 via the N-acetylneuraminic acid moiety.


Assuntos
Proteínas de Bactérias/metabolismo , Fosfotransferases/metabolismo , Receptores de Superfície Celular/metabolismo , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Ligação ao Cálcio , Proteínas de Ligação a DNA , Regulação Bacteriana da Expressão Gênica/fisiologia , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Mutação , Ácido N-Acetilneuramínico/química , Fosfotransferases/química , Ligação Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saliva/química , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Proteínas Supressoras de Tumor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA