Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 154(Pt 3): 810-817, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18310027

RESUMO

The bacterial flagellar motor is embedded in the cytoplasmic membrane, and penetrates the peptidoglycan layer and the outer membrane. A ring structure of the basal body called the P ring, which is located in the peptidoglycan layer, is thought to be required for smooth rotation and to function as a bushing. In this work, we characterized 32 cysteine-substituted Escherichia coli P-ring protein FlgI variants which were designed to substitute every 10th residue in the 346 aa mature form of FlgI. Immunoblot analysis against FlgI protein revealed that the cellular amounts of five FlgI variants were significantly decreased. Swarm assays showed that almost all of the variants had nearly wild-type function, but five variants significantly reduced the motility of the cells, and one of them in particular, FlgI G21C, completely disrupted FlgI function. The five residues that impaired motility of the cells were localized in the N terminus of FlgI. To demonstrate which residue(s) of FlgI is exposed to solvent on the surface of the protein, we examined cysteine modification by using the thiol-specific reagent methoxypolyethylene glycol 5000 maleimide, and classified the FlgI Cys variants into three groups: well-, moderately and less-labelled. Interestingly, the well- and moderately labelled residues of FlgI never overlapped with the residues known to be important for protein amount or motility. From these results and multiple alignments of amino acid sequences of various FlgI proteins, the highly conserved region in the N terminus, residues 1-120, of FlgI is speculated to play important roles in the stabilization of FlgI structure and the formation of the P ring by interacting with FlgI molecules and/or other flagellar components.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/fisiologia , Locomoção , Substituição de Aminoácidos , Proteínas de Bactérias/fisiologia , Sequência Conservada , Escherichia coli/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica
2.
J Bacteriol ; 188(12): 4190-7, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16740925

RESUMO

The P ring of the bacterial flagellar motor consists of multiple copies of FlgI, a periplasmic protein. The intramolecular disulfide bond in FlgI has previously been reported to be essential for P-ring assembly in Escherichia coli, because the P ring was not assembled in a dsbB strain that was defective for disulfide bond formation in periplasmic proteins. We, however, found that the two Cys residues of FlgI are not conserved in other bacterial species. We then assessed the role of this intramolecular disulfide bond in FlgI. A Cys-eliminated FlgI derivative formed a P ring that complemented the flagellation defect of our DeltaflgI strain when it was overproduced, suggesting that disulfide bond formation in FlgI is not absolutely required for P-ring assembly. The levels of the mature forms of the FlgI derivatives were significantly lower than that of wild-type FlgI, although the precursor protein levels were unchanged. Moreover, the FlgI derivatives were more susceptible to degradation than wild-type FlgI. Overproduction of FlgI suppressed the motility defect of DeltadsbB cells. Additionally, the low level of FlgI observed in the DeltadsbB strain increased in the presence of l-cystine, an oxidative agent. We propose that intramolecular disulfide bond formation facilitates the rapid folding of the FlgI monomer to protect against degradation in the periplasmic space, thereby allowing its efficient self-assembly into the P ring.


Assuntos
Proteínas de Bactérias/metabolismo , Dissulfetos/metabolismo , Escherichia coli/fisiologia , Flagelos/metabolismo , Proteínas de Bactérias/química , Cistina/metabolismo , Escherichia coli/metabolismo , Flagelos/química , Locomoção , Dobramento de Proteína
3.
J Biol Chem ; 281(33): 23880-6, 2006 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-16679313

RESUMO

The remarkably wide dynamic range of the chemotactic pathway of Escherichia coli, a model signal transduction system, is achieved by methylation/amidation of the transmembrane chemoreceptors that regulate the histidine kinase CheA in response to extracellular stimuli. The chemoreceptors cluster at a cell pole together with CheA and the adaptor CheW. Several lines of evidence have led to models that assume high cooperativity and sensitivity via collaboration of receptor dimers within a cluster. Here, using in vivo disulfide cross-linking assays, we have demonstrated a well defined arrangement of the aspartate chemoreceptor (Tar). The differential effects of amidation on cross-linking at different positions indicate that amidation alters the relative orientation of Tar dimers to each other (presumably inducing rotational displacements) without much affecting the conformation of the periplasmic domains. Interestingly, the effect of aspartate on cross-linking at any position tested was roughly opposite to that of receptor amidation. Furthermore, amidation attenuated the effects of aspartate by several orders of magnitude. These results suggest that receptor covalent modification controls signal gain by altering the arrangement or packing of receptor dimers in a pre-formed cluster.


Assuntos
Proteínas de Bactérias/metabolismo , Células Quimiorreceptoras/metabolismo , Quimiotaxia , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Amidas/metabolismo , Proteínas de Bactérias/química , Células Quimiorreceptoras/química , Quimiotaxia/genética , Reagentes de Ligações Cruzadas/metabolismo , Cisteína/metabolismo , Dimerização , Dissulfetos/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Histidina Quinase , Proteínas de Membrana/química , Proteínas Quimiotáticas Aceptoras de Metil , Metilação , Mutagênese Sítio-Dirigida , Periplasma/genética , Periplasma/metabolismo , Estrutura Terciária de Proteína , Receptores de Aminoácido/química , Receptores de Aminoácido/genética , Receptores de Aminoácido/metabolismo , Receptores de Superfície Celular , Transdução de Sinais/genética
4.
Mol Microbiol ; 60(4): 894-906, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16677301

RESUMO

In Escherichia coli, chemoreceptor clustering at a cell pole seems critical for signal amplification and adaptation. However, little is known about the mechanism of localization itself. Here we examined whether the aspartate chemoreceptor (Tar) is inserted directly into the polar membrane by using its fusion to green fluorescent protein (GFP). After induction of Tar-GFP, fluorescent spots first appeared in lateral membrane regions, and later cell poles became predominantly fluorescent. Unexpectedly, Tar-GFP showed a helical arrangement in lateral regions, which was more apparent when a Tar-GFP derivative with two cysteine residues in the periplasmic domain was cross-linked to form higher oligomers. Moreover, similar distribution was observed even when the cytoplasmic domain of the double cysteine Tar-GFP mutant was replaced by that of the kinase EnvZ, which does not localize to a pole. Observation of GFP-SecE and a translocation-defective MalE-GFP mutant, as well as indirect immunofluorescence microscopy on SecG, suggested that the general protein translocation machinery (Sec) itself is arranged into a helical array, with which Tar is transiently associated. The Sec coil appeared distinct from the MreB coil, an actin-like cytoskeleton. These findings will shed new light on the mechanisms underlying spatial organization of membrane proteins in E. coli.


Assuntos
Membrana Celular/metabolismo , Células Quimiorreceptoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas da Membrana Bacteriana Externa/análise , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias , Membrana Celular/química , Polaridade Celular , Citoplasma/química , Citoplasma/metabolismo , Escherichia coli/química , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/genética , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Complexos Multienzimáticos/análise , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutação , Proteínas Periplásmicas de Ligação/análise , Proteínas Periplásmicas de Ligação/metabolismo , Transporte Proteico , Receptores de Superfície Celular/análise , Receptores de Superfície Celular/genética , Canais de Translocação SEC
5.
J Biol Chem ; 281(26): 17727-35, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16636062

RESUMO

The chemoreceptor Tcp of Salmonella enterica serovar Typhimurium can sense citrate and a metal-citrate complex as distinct attractants. In this study, we tried to investigate the molecular mechanism of this discrimination. That citrate binds directly to Tcp was verified by the site-specific thiol modification assays using membrane fractions prepared from Escherichia coli cells expressing the mutant Tcp receptors in which single Cys residues were introduced at positions in the putative ligand-binding pocket. To determine the region responsible for the ligand discrimination, we screened for mutations defective in taxis to magnesium in the presence of citrate. All of the isolated mutants from random mutagenesis with hydroxylamine were defective in both citrate and metal-citrate sensing, and the mutated residues are located in or near the alpha1-alpha2 and alpha3-alpha4 loops within the periplasmic domain. Further analyses with site-directed replacements around these regions demonstrated that the residue Asn(67), which is presumed to lie at the subunit interface of the Tcp homodimer, plays a critical role in the recognition of the metal-citrate complex but not that of citrate. Various amino acids at this position differentially affect the citrate and metal-citrate sensing abilities. Thus, for the first time, the abilities to sense the two attractants were genetically dissected. Based on the results obtained in this study, we propose models in which the discrimination of the metal-citrate complex from citrate involves cooperative interaction at Asn(67) and allosteric switching.


Assuntos
Quimiotaxia/fisiologia , Ácido Cítrico/metabolismo , Magnésio/metabolismo , Proteínas de Membrana/metabolismo , Salmonella typhimurium/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Asparagina/genética , Asparagina/metabolismo , Cisteína/genética , Cisteína/metabolismo , Escherichia coli/genética , Hidroxilamina/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Salmonella typhimurium/genética
6.
Mol Microbiol ; 58(4): 917-28, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16262780

RESUMO

Establishment of an axis of cell polarity and differentiation of the cell poles are fundamental aspects of cellular development in many organisms. We compared the effects of two bacterial cytoskeletal-like systems, the MreB and MinCDE systems, on these processes in Escherichia coli. We report that the Min proteins are capable of establishing an axis of oscillation that is the initial step in establishment of polarity in spherical cells, in a process that is independent of the MreB cytoskeleton. In contrast, the MreB system is required for establishment of the rod shape of the cell and for polar targeting of other polar constituents, such as the Shigella virulence factor IcsA and the aspartate chemoreceptor Tar, in a process that is independent of the Min system. Thus, the two bacterial cytoskeletal-like systems act independently on different aspects of cell polarization.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Escherichia coli/citologia , Escherichia coli/fisiologia , Adenosina Trifosfatases/análise , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Células Quimiorreceptoras , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Microscopia de Fluorescência , Modelos Biológicos , Mutagênese Insercional , Receptores de Superfície Celular/metabolismo , Shigella/citologia , Shigella/genética , Shigella/fisiologia , Coloração e Rotulagem , Fatores de Transcrição/metabolismo
7.
Proc Natl Acad Sci U S A ; 101(10): 3462-7, 2004 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-14993606

RESUMO

Many sensory systems involve multiple steps of signal amplification to produce a significant response. One such mechanism may be the clustering of transmembrane receptors. In bacterial chemotaxis, where a stoichiometric His-Asp phosphorelay from the kinase CheA to the response regulator CheY plays a central role, the chemoreceptors (methyl-accepting chemotaxis proteins) cluster together with CheA and the adaptor CheW, at a pole of a rod-shaped cell. This clustering led to a proposal that signal amplification occurs through an interaction between chemoreceptor homodimers. Here, by using in vivo disulfide crosslinking assays, we examined an interdimer interaction of the aspartate chemoreceptor (Tar). Two cysteine residues were introduced into Tar: one at the subunit interface and the other at the external surface of the dimer. Crosslinked dimers and higher oligomers (especially a deduced hexamer) were detected and their abundance depended on CheA and CheW. The ligand aspartate significantly reduced the amounts of higher oligomers but did not affect the polar localization of Tar-GFP. Thus, the binding of aspartate alters the rate of collisions between Tar dimers in assembled signaling complexes, most likely due to a change in the relative positions or trajectories of the dimers. These collisions could occur within a trimer-ofdimers predicted by crystallography, or between such trimers. These results are consistent with the proposal that the interaction of chemoreceptor dimers is involved in signal transduction.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Ácido Aspártico/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Polaridade Celular , Células Quimiorreceptoras , Quimiotaxia , Reagentes de Ligações Cruzadas , DNA Bacteriano/genética , Dimerização , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ligantes , Modelos Moleculares , Estrutura Quaternária de Proteína , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA