Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Support Care Cancer ; 31(12): 730, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019339

RESUMO

PURPOSE: Chemotherapy-induced peripheral neuropathy (CIPN) has been reported to reduce patients' quality of life and impair cancer treatment by causing anticancer drug withdrawal or interruption. However, there are currently no effective methods for the prevention of CIPN. Renin-angiotensin-aldosterone system (RAAS) inhibitors may be associated with a reduced risk of developing oxaliplatin-induced peripheral neuropathy, and it would be valuable to examine whether they have the same effect on CIPN caused by other anticancer drugs. Our study explored the potential preventive effects of RAAS inhibitors on preventing paclitaxel-induced peripheral neuropathy (PIPN). METHODS: An exploratory cohort study was conducted using commercially available administrative claims data on lung cancer patients treated with paclitaxel-based chemotherapy. Cumulative paclitaxel doses, RAAS inhibitor prescriptions, and incidences of PIPN were identified using patient medical records. Fine-Gray analyses with death as a competing risk were performed. A propensity score approach was applied to address the problem of confounding. RESULTS: Patients with lung cancer who received paclitaxel-based chemotherapy were classified into users of RAAS inhibitor (n = 1320) and non-users of RAAS inhibitor (n = 4566). The doses of RAAS inhibitors in our study were similar to those commonly used to treat hypertension. The PIPN incidence was significantly lower in users of RAAS inhibitor than in the non-users of RAAS inhibitor (sub-distribution hazard ratio, 0.842; 95% confidence interval, 0.762-0.929). The result was consistent in various sensitivity analyses and important subgroup analyses. CONCLUSIONS: RAAS inhibitors at doses commonly used for hypertension were associated with a reduced incidence of PIPN in patients with lung cancer.


Assuntos
Hipertensão , Neoplasias Pulmonares , Doenças do Sistema Nervoso Periférico , Humanos , Sistema Renina-Angiotensina , Paclitaxel/efeitos adversos , Neoplasias Pulmonares/tratamento farmacológico , Estudos de Coortes , Qualidade de Vida , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/prevenção & controle , Anti-Hipertensivos
2.
In Vitro Cell Dev Biol Anim ; 59(1): 10-18, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36689044

RESUMO

Osteoblasts produce the receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin, the inducer and the suppressor of osteoclast differentiation and activation. We previously proposed that the degradation of osteoprotegerin by lysine-specific gingipain of Porphyromonas gingivalis and neutrophil elastase is one of the mechanisms of bone resorption associated with infection and inflammation. In the present study, we found that cathepsin K (CTSK) also degraded osteoprotegerin in an acidic milieu and the buffer with a pH of 7.4. The 37 k fragment of osteoprotegerin produced by the reaction with CTSK was further degraded into low molecular weight fragments, including a 13 k fragment, depending on the reaction time. The N-terminal amino acid sequence of the 37 k fragment matched that of the intact osteoprotegerin, indicating that CTSK preferentially hydrolyzes the death domain-like region of osteoprotegerin, not its RANKL-binding region. The 13 k fragment of osteoprotegerin was the C-terminal 13 k portion within the RANKL-binding region of the 37 k fragment. Finally, CTSK restored RANKL-dependent osteoclast differentiation that was suppressed by the addition of osteoprotegerin. Collectively, CTSK is a possible positive regulator of osteoclastogenesis.


Assuntos
Osteogênese , Osteoprotegerina , Animais , Osteoprotegerina/metabolismo , Catepsina K/metabolismo , Glicoproteínas/metabolismo , Osteoclastos/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Transporte/metabolismo , Ligante RANK/metabolismo , Diferenciação Celular
3.
Biochem Biophys Res Commun ; 597: 44-51, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123265

RESUMO

Osteocytes sense the microenvironmental stimuli, including mechanical stress, and regulate bone resorption by osteoclasts and bone formation by osteoblasts. Diabetes and cancer metastasis to bone raise l-lactic acid in the bone tissue, causing acidification. Here, we investigated the effects of l-lactic acid and extracellular acidification on the function of mouse Ocy454 osteocytes. L- and d-lactic acid with low chiral selectivity and acidification of the medium raised the production of sclerostin and osteoprotegerin by Ocy454 cells. The mRNA expression of their genes increased after either treatment of L- and d-lactic acid or acidification of the medium. Furthermore, the conditioned medium of Ocy454 cells cultured in an acidic environment suppressed the induction of alkaline phosphatase activity in MC3T3-E1 cells, which was recovered by the anti-sclerostin antibody. While it is reported that HDAC5 inhibits the transcription of the sclerostin gene, extracellular acidification reduced the nuclear localization of HDAC5 in Ocy454 cells. While calmodulin kinase II (CaMKII) is known to phosphorylate and induce extranuclear translocation of HDAC5, KN-62, an inhibitor of CaMKII lowered the expression of the sclerostin gene in Ocy454 cells. Collectively, extracellular acidification is a microenvironmental factor that modulates osteocyte functions.

4.
Front Cell Dev Biol ; 9: 681347, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497803

RESUMO

Blood outgrowth smooth muscle cells (BO-SMCs) offer the means to study vascular cells without the requirement for surgery providing opportunities for drug discovery, tissue engineering, and personalized medicine. However, little is known about these cells which meant that their therapeutic potential remains unexplored. Our objective was to investigate for the first time the ability of BO-SMCs and vessel-derived smooth muscle cells to sense the thromboxane mimetic U46619 by measuring intracellular calcium elevation and contraction. U46619 (10-6 M) increased cytosolic calcium in BO-SMCs and vascular smooth muscle cells (VSMCs) but not in fibroblasts. Increased calcium signal peaked between 10 and 20 s after U46619 in both smooth muscle cell types. Importantly, U46619 (10-9 to 10-6 M) induced concentration-dependent contractions of both BO-SMCs and VSMCs but not in fibroblasts. In summary, we show that functional responses of BO-SMCs are in line with VSMCs providing critical evidence of their application in biomedical research.

5.
Biochem Biophys Res Commun ; 554: 173-178, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33798944

RESUMO

Neural crest-derived cells (NCDCs), a class of adult stem cells not restricted to embryonic tissues, are attractive tissue regenerative therapy candidates because of their ease of isolation, self-renewing properties, and multipotency. Although adult NCDCs can undergo osteogenic differentiation in vitro, whether they induce bone formation in vivo remains unclear. Previously, our group reported findings showing high amounts of NCDCs scattered throughout nasal concha tissues of adult mice. In the present study, NCDCs in nasal conchae labeled with enhanced green fluorescent protein (EGFP) were collected from adult P0-Cre/CAG-CAT-EGFP double transgenic mice, then cultured in serum-free medium to increase the number. Subsequently, NCDCs were harvested and suspended in type I atelocollagen gel, then an atelocollagen sponge was used as a scaffold for the cell suspension. Atelocollagen scaffolds with NCDCs were placed on bone defects created in a mouse calvarial bone defect model. Over the ensuing 12 weeks, micro-CT and histological analysis findings showed that mice with scaffolds containing NCDCs had slightly greater bone formation as compared to those with a scaffold alone. Furthermore, Raman spectroscopy revealed spectral properties of bone in mice that received scaffolds with NCDCs similar to those of native calvarial bone. Bone regeneration is important not only for gaining bone mass but also chemical properties. These results are the first to show the validity of biomolecule-free adult nasal concha-derived NCDCs for bone regeneration, including the chemical properties of regenerated bone tissue.


Assuntos
Células-Tronco Adultas/citologia , Regeneração Óssea/fisiologia , Crista Neural/citologia , Transplante de Células-Tronco/métodos , Conchas Nasais/citologia , Células-Tronco Adultas/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Crista Neural/metabolismo , Conchas Nasais/metabolismo
6.
FASEB J ; 34(1): 1745-1754, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914612

RESUMO

Blood vessels are comprised of endothelial and smooth muscle cells. Obtaining both types of cells from vessels of living donors is not possible without invasive surgery. To address this, we have devised a strategy whereby human endothelial and smooth muscle cells derived from blood progenitors from the same donor could be cultured with autologous leukocytes to generate a same donor "vessel in a dish" bioassay. Autologous sets of blood outgrowth endothelial cells (BOECs), smooth muscle cells (BO-SMCs), and leukocytes were obtained from four donors. Cells were treated in monoculture and cumulative coculture conditions. The endothelial specific mediator endothelin-1 along with interleukin (IL)-6, IL-8, tumor necrosis factor α, and interferon gamma-induced protein 10 were measured under control culture conditions and after stimulation with cytokines. Cocultures remained viable throughout. The profile of individual mediators released from cells was consistent with what we know of endothelial and smooth muscle cells cultured from blood vessels. For the first time, we report a proof of concept study where autologous blood outgrowth "vascular" cells and leukocytes were studied alone and in coculture. This novel bioassay has usefulness in vascular biology research, patient phenotyping, drug testing, and tissue engineering.


Assuntos
Células Endoteliais/fisiologia , Leucócitos/fisiologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Bioensaio/métodos , Células Cultivadas , Técnicas de Cocultura/métodos , Citocinas/metabolismo , Descoberta de Drogas/métodos , Células Endoteliais/metabolismo , Humanos , Interleucina-6/metabolismo , Leucócitos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Engenharia Tecidual/métodos , Fator de Necrose Tumoral alfa/metabolismo
7.
Sci Rep ; 8(1): 13987, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30228360

RESUMO

Amine quantification is an important strategy in patient stratification and personalised medicine. This is because amines, including amino acids and methylarginines impact on many homeostatic processes. One important pathway regulated by amine levels is nitric oxide synthase (NOS). NOS is regulated by levels of (i) the substrate, arginine, (ii) amino acids which cycle with arginine and (iii) methylarginine inhibitors of NOS. However, biomarker research in this area is hindered by the lack of a unified analytical platform. Thus, the development of a common metabolomics platform, where a wide range of amino acids and methylarginines can be measured constitutes an important unmet need. Here we report a novel high-throughput ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) platform where ≈40 amine analytes, including arginine and methylarginines can be detected and quantified on a molar basis, in a single sample of human plasma. To validate the platform and to generate biomarkers, human plasma from a well-defined cohort of patients before and after coronary artery bypass surgery, who developed systemic inflammatory response syndrome (SIRS), were analysed. Bypass surgery with SIRS significantly altered 26 amine analytes, including arginine and ADMA. Consequently, pathway analysis revealed significant changes in a range of pathways including those associated with NOS.


Assuntos
Aminas/sangue , Aminoácidos/sangue , Arginina/análogos & derivados , Biomarcadores/sangue , Cromatografia Líquida de Alta Pressão/métodos , Síndrome de Resposta Inflamatória Sistêmica/sangue , Espectrometria de Massas em Tandem/métodos , Idoso , Arginina/sangue , Feminino , Humanos , Masculino , Prognóstico , Síndrome de Resposta Inflamatória Sistêmica/cirurgia
8.
Toxicology ; 228(2-3): 299-309, 2006 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17067731

RESUMO

C/EBP homologous protein (CHOP) is a transcriptional factor and is induced under conditions such as the unfolded protein response or amino acid starvation. A previous study showed that the transcriptional level of CHOP was highly increased in rat liver in which hepatocellular apoptosis was induced by cycloheximide (CHX) treatment. Here, we investigated the relationship between hepatocellular apoptosis and CHOP-mediated apoptotic pathway, and studied the mechanisms of induction of CHOP gene in the liver of rats treated with CHX. Male F344 rats were treated intravenously with 6mg/kg CHX, and sacrificed at 1, 2 and 6h after the treatment. In the gene expression assay using quantitative RT-PCR, the genes related to CHOP-mediated apoptosis such as the C/EBPbeta, ATF3 and ATF4 genes were significantly increased corresponding to the induction of hepatocellular apoptosis in rats treated with CHX. However the GRP78/Bip gene, which serves as a representative marker for the unfolded protein response, did not change after the treatment. Toxicoproteomics using two-dimensional difference gel electrophoresis and mass spectrometry indicated that GRP78/Bip was inactivated by the CHX treatment. Furthermore, the CHX-treated animals exhibited a significant decrease of phosphorylated Akt/PKB (protein kinase B). These results indicate that the protein synthesis inhibition by CHX induces the CHOP gene through a pathway similar to that of amino acid starvation, and that Akt/PKB inactivation enhances the CHOP-mediated hepatocellular apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Cicloeximida/farmacologia , Hepatócitos/efeitos dos fármacos , Fígado/citologia , Inibidores da Síntese de Proteínas/farmacologia , Animais , Eletroforese em Gel Bidimensional , Ensaio de Imunoadsorção Enzimática , Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Hidrólise , Processamento de Imagem Assistida por Computador , Marcação In Situ das Extremidades Cortadas , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Espectrometria de Massas , Fosfoproteínas/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-jun/biossíntese , RNA Mensageiro/biossíntese , Ratos , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fator de Transcrição CHOP/metabolismo , Tripsina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA