Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(8)2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37628567

RESUMO

Post-transcriptional modifications of tRNA are crucial for their core function. The inosine (I; 6-deaminated adenosine) at the first position in the anticodon of tRNAArg(ICG) modulates the decoding capability and is generally considered essential for reading CGU, CGC, and CGA codons in eubacteria. We report here that the Bacillus subtilis yaaJ gene encodes tRNA-specific adenosine deaminase and is non-essential for viability. A ß-galactosidase reporter assay revealed that the translational activity of CGN codons was not impaired in the yaaJ-deletion mutant. Furthermore, tRNAArg(CCG) responsible for decoding the CGG codon was dispensable, even in the presence or absence of yaaJ. These results strongly suggest that tRNAArg with either the anticodon ICG or ACG has an intrinsic ability to recognize all four CGN codons, providing a fundamental concept of non-canonical wobbling mediated by adenosine and inosine nucleotides in the anticodon. This is the first example of the four-way wobbling by inosine nucleotide in bacterial cells. On the other hand, the absence of inosine modification induced +1 frameshifting, especially at the CGA codon. Additionally, the yaaJ deletion affected growth and competency. Therefore, the inosine modification is beneficial for translational fidelity and proper growth-phase control, and that is why yaaJ has been actually conserved in B. subtilis.


Assuntos
Anticódon , Magnoliopsida , Adenosina Desaminase/genética , Bacillus subtilis/genética , RNA de Transferência de Arginina , RNA de Transferência/genética , Adenosina/genética , Inosina/genética
2.
Microbiologyopen ; 8(8): e00815, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30809948

RESUMO

The ε subunit of Fo F1 -ATPase/synthase (Fo F1 ) plays a crucial role in regulating Fo F1 activity. To understand the physiological significance of the ε subunit-mediated regulation of Fo F1 in Bacillus subtilis, we constructed and characterized a mutant harboring a deletion in the C-terminal regulatory domain of the ε subunit (ε∆C ). Analyses using inverted membrane vesicles revealed that the ε∆C mutation decreased ATPase activity and the ATP-dependent H+ -pumping activity of Fo F1 . To enhance the effects of ε∆C mutation, this mutation was introduced into a ∆rrn8 strain harboring only two of the 10 rrn (rRNA) operons (∆rrn8 ε∆C mutant strain). Interestingly, growth of the ∆rrn8 ε∆C mutant stalled at late-exponential phase. During the stalled growth phase, the membrane potential of the ∆rrn8 ε∆C mutant cells was significantly reduced, which led to a decrease in the cellular level of 70S ribosomes. The growth stalling was suppressed by adding glucose into the culture medium. Our findings suggest that the C-terminal region of the ε subunit is important for alleviating the temporal reduction in the membrane potential, by enhancing the ATP-dependent H+ -pumping activity of Fo F1 .


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Membrana Celular/fisiologia , Potenciais da Membrana , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Prótons , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Domínios Proteicos , Subunidades Proteicas/genética , ATPases Translocadoras de Prótons/genética , Deleção de Sequência
3.
J Bacteriol ; 191(14): 4555-61, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19447912

RESUMO

In Bacillus subtilis a null mutation of the relA gene, whose gene product is involved in the synthesis and/or hydrolysis of (p)ppGpp, causes a growth defect that can be suppressed by mutation(s) of yjbM and/or ywaC coding for small (p)ppGpp synthetases. All 35 suppressor mutations newly isolated were classified into two groups, either yjbM or ywaC, by mapping and sequencing their mutations, suggesting that there are no (p)ppGpp synthetases other than RelA, YjbM, and YwaC in B. subtilis. In order to understand better the relation between RelA and rRNA synthesis, we studied in the relA mutant the transcriptional regulation of seven rRNA operons (rrnO, -A, -J, -I, -E, -D, or -B) individually after integration of a promoter- and terminatorless cat gene. We identified the transcriptional start sites of each rrn operon (a G) and found that transcription of all rrn operons from their P1 promoters was drastically reduced in the relA mutant while this was almost completely restored in the relA yjbM ywaC triple mutant. Taken together with previous results showing that the intracellular GTP concentration was reduced in the relA mutant while it was restored in the triple mutant, it seems likely that continuous (p)ppGpp synthesis by YjbM and/or YwaC at a basal level causes a decrease in the amounts of intracellular GTP.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Ligases/genética , RNA Ribossômico/biossíntese , Transcrição Gênica , Óperon de RNAr , Sequência de Bases , Cloranfenicol O-Acetiltransferase/biossíntese , Cloranfenicol O-Acetiltransferase/genética , Deleção de Genes , Genes Reporter , Genes de RNAr , Guanosina Pentafosfato/metabolismo , Dados de Sequência Molecular , Óperon , Supressão Genética , Sítio de Iniciação de Transcrição
4.
Antimicrob Agents Chemother ; 53(1): 193-201, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19001112

RESUMO

The methyltransferases RsmG and KsgA methylate the nucleotides G535 (RsmG) and A1518 and A1519 (KsgA) in 16S rRNA, and inactivation of the proteins by introducing mutations results in acquisition of low-level resistance to streptomycin and kasugamycin, respectively. In a Bacillus subtilis strain harboring a single rrn operon (rrnO), we found that spontaneous ksgA mutations conferring a modest level of resistance to kasugamycin occur at a high frequency of 10(-6). More importantly, we also found that once cells acquire the ksgA mutations, they produce high-level kasugamycin resistance at an extraordinarily high frequency (100-fold greater frequency than that observed in the ksgA(+) strain), a phenomenon previously reported for rsmG mutants. This was not the case for other antibiotic resistance mutations (Tsp(r) and Rif(r)), indicating that the high frequency of emergence of a mutation for high-level kasugamycin resistance in the genetic background of ksgA is not due simply to increased persistence of the ksgA strain. Comparative genome sequencing showed that a mutation in the speD gene encoding S-adenosylmethionine decarboxylase is responsible for the observed high-level kasugamycin resistance. ksgA speD double mutants showed a markedly reduced level of intracellular spermidine, underlying the mechanism of high-level resistance. A growth competition assay indicated that, unlike rsmG mutation, the ksgA mutation is disadvantageous for overall growth fitness. This study clarified the similarities and differences between ksgA mutation and rsmG mutation, both of which share a common characteristic--failure to methylate the bases of 16S rRNA. Coexistence of the ksgA mutation and the rsmG mutation allowed cell viability. We propose that the ksgA mutation, together with the rsmG mutation, may provide a novel clue to uncover a still-unknown mechanism of mutation and ribosomal function.


Assuntos
Aminoglicosídeos/farmacologia , Proteínas de Bactérias/fisiologia , Resistência Microbiana a Medicamentos/genética , Metiltransferases/fisiologia , RNA Ribossômico 16S/metabolismo , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Resistência Microbiana a Medicamentos/fisiologia , Metiltransferases/genética , Mutação
5.
Mol Microbiol ; 67(2): 291-304, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18067544

RESUMO

Bacterial alarmone (p)ppGpp, is a global regulator responsible for the stringent control. Two homologous (p)ppGpp synthetases, RelA and SpoT, have been identified and characterized in Escherichia coli, whereas Gram-positive bacteria such as Bacillus subtilis have been thought to possess only a single RelA-SpoT enzyme. We have now identified two genes, yjbM and ywaC, in B. subtilis that encode a novel type of alarmone synthetase. The predicted products of these genes are relatively small proteins ( approximately 25 kDa) that correspond to the (p)ppGpp synthetase domain of RelA-SpoT family members. A database survey revealed that genes homologous to yjbM and ywaC are conserved in certain bacteria belonging to Firmicutes or Actinobacteria phyla but not in other phyla such as Proteobacteria. We designated the proteins as small alarmone synthetases (SASs) to distinguish them from RelA-SpoT proteins. The (p)ppGpp synthetase function of YjbM and YwaC was confirmed by genetic complementation analysis and by in vitro assay of enzyme activity. Molecular genetic analysis also revealed that ywaC is induced by alkaline shock, resulting in the transient accumulation of ppGpp. The SAS proteins thus likely function in the biosynthesis of alarmone with a mode of action distinct from that of RelA-SpoT homologues.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ligases/genética , Ligases/metabolismo , Sequência de Aminoácidos , Arginina/análogos & derivados , Arginina/metabolismo , Bacillus subtilis/classificação , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Guanosina Tetrafosfato/biossíntese , Ligases/química , Ligases/fisiologia , Dados de Sequência Molecular , Mutação , Filogenia , Alinhamento de Sequência , Transcrição Gênica
6.
J Biochem ; 133(3): 295-302, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12761164

RESUMO

ComK protein of Bacillus subtilis positively regulates the transcription of several late competence genes as well as comK itself. We constructed a clpX disrupted mutant of B. subtilis and studied its effect on the regulation of ComK activation. When Pspac, which controls the comK gene in a multicopy plasmid, was induced by the addition of IPTG, comK transcripts were detected in both the clpX mutant and the wild type. However, the ComK protein could not be detected in the clpX disrupted mutant. To obtain further information, we constructed several comK-lacZ translational fusions covering different lengths of the comK gene, whose transcription is controlled by an IPTG inducible Pspac promoter. We found that both the expression of comK-lacZ directed beta-galactosidase and the accumulation of ComK-LacZ fused protein, derived from the fusion containing the entire comK open reading frame, were extremely reduced in the clpX mutant compared with the wild type, while the accumulation of comK-lacZ transcripts in the clpX mutant after the addition of IPTG was about half that in the clpX+ background. On the other hand, transcription, translation and activity of comK-lacZ were detected in both the clpX mutant and the wild type when the comK-lacZ fusion lacking the 3' region of the comK gene was induced. These results indicate that ClpX plays an important role in the regulation of ComK at the post-transcriptional level.


Assuntos
Adenosina Trifosfatases/fisiologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/biossíntese , Adenosina Trifosfatases/genética , Bacillus subtilis/genética , Endopeptidase Clp , Proteínas de Escherichia coli , Chaperonas Moleculares , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA