Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 42(16): e111133, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37431790

RESUMO

Naked mole-rats (NMRs) have exceptional longevity and are resistant to age-related physiological decline and diseases. Given the role of cellular senescence in aging, we postulated that NMRs possess unidentified species-specific mechanisms to prevent senescent cell accumulation. Here, we show that upon induction of cellular senescence, NMR fibroblasts underwent delayed and progressive cell death that required activation of the INK4a-retinoblastoma protein (RB) pathway (termed "INK4a-RB cell death"), a phenomenon not observed in mouse fibroblasts. Naked mole-rat fibroblasts uniquely accumulated serotonin and were inherently vulnerable to hydrogen peroxide (H2 O2 ). After activation of the INK4a-RB pathway, NMR fibroblasts increased monoamine oxidase levels, leading to serotonin oxidization and H2 O2 production, which resulted in increased intracellular oxidative damage and cell death activation. In the NMR lung, induction of cellular senescence caused delayed, progressive cell death mediated by monoamine oxidase activation, thereby preventing senescent cell accumulation, consistent with in vitro results. The present findings indicate that INK4a-RB cell death likely functions as a natural senolytic mechanism in NMRs, providing an evolutionary rationale for senescent cell removal as a strategy to resist aging.


Assuntos
Senescência Celular , Serotonina , Animais , Camundongos , Serotonina/metabolismo , Senescência Celular/fisiologia , Envelhecimento/metabolismo , Morte Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Ratos-Toupeira/metabolismo
2.
Annu Rev Anim Biosci ; 11: 207-226, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36318672

RESUMO

Naked mole-rats (NMRs, Heterocephalus glaber) are the longest-lived rodents with a maximum life span exceeding 37 years. They exhibit a delayed aging phenotype and resistance to age-related functional decline/diseases. Specifically, they do not display increased mortality with age, maintain several physiological functions until nearly the end of their lifetime, and rarely develop cancer and Alzheimer's disease. NMRs live in a hypoxic environment in underground colonies in East Africa and are highly tolerant of hypoxia. These unique characteristics of NMRs have attracted considerable interest from zoological and biomedical researchers. This review summarizes previous studies of the ecology, hypoxia tolerance, longevity/delayed aging, and cancer resistance of NMRs and discusses possible mechanisms contributing to their healthy aging. In addition, we discuss current issues and future perspectives to fully elucidate the mechanisms underlying delayed aging and resistance to age-related diseases in NMRs.


Assuntos
Envelhecimento Saudável , Animais , Envelhecimento/genética , Longevidade/fisiologia , Ratos-Toupeira/fisiologia , Hipóxia/veterinária
3.
Cancer Sci ; 113(12): 4030-4036, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36083242

RESUMO

Certain mammalian species are resistant to cancer, and a better understanding of how this cancer resistance arises could provide valuable insights for basic cancer research. Recent technological innovations in molecular biology have allowed the study of cancer-resistant mammals, despite the fact that they are not the classical model animals, which are easily studied using genetic approaches. Naked mole-rats (NMRs; Heterocephalus glaber) are the longest-lived rodent, with a maximum lifespan of more than 37 years, and almost never show spontaneous carcinogenesis. NMRs are currently attracting much attention from aging and cancer researchers, and published studies on NMR have continued to increase over the past decade. Cancer development occurs via multiple steps and involves many biological processes. Recent research on the NMR as a model for cancer resistance suggests that they possess various unique carcinogenesis-resistance mechanisms, including efficient DNA repair pathways, cell-autonomous resistance to transformation, and dampened inflammatory response. Here, we summarize the molecular mechanisms of carcinogenesis resistance in NMR, which have been uncovered over the past two decades, and discuss future perspectives.


Assuntos
Fenômenos Biológicos , Neoplasias , Animais , Ratos-Toupeira/genética , Ratos-Toupeira/metabolismo , Longevidade/genética , Envelhecimento/genética , Neoplasias/genética
4.
RNA ; 28(8): 1128-1143, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35654483

RESUMO

Paraspeckles are mammalian-specific nuclear bodies built on the long noncoding RNA NEAT1_2 The molecular mechanisms of paraspeckle formation have been mainly studied using human or mouse cells, and it is not known if the same molecular components are involved in the formation of paraspeckles in other mammalian species. We thus investigated the expression pattern of NEAT1_2 in naked mole-rats (nNEAT1_2), which exhibit extreme longevity and lower susceptibility to cancer. In the intestine, nNEAT1_2 is widely expressed along the entire intestinal epithelium, which is different from the expression of mNeat1_2 that is restricted to the cells of the distal tip in mice. Notably, the expression of FUS, a FET family RNA binding protein, essential for the formation of paraspeckles both in humans and mice, was absent in the distal part of the intestinal epithelium in naked mole-rats. Instead, mRNAs of other FET family proteins EWSR1 and TAF15 were expressed in the distal region. Exogenous expression of these proteins in Fus-deficient murine embryonic fibroblast cells rescued the formation of paraspeckles. These observations suggest that nNEAT1_2 recruits a different set of RNA binding proteins in a cell type-specific manner during the formation of paraspeckles in different organisms.


Assuntos
Paraspeckles , RNA Longo não Codificante , Animais , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Ratos-Toupeira/genética , Ratos-Toupeira/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética
5.
Commun Biol ; 5(1): 287, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354912

RESUMO

Naked mole-rats (NMRs) have a very low spontaneous carcinogenesis rate, which has prompted studies on the responsible mechanisms to provide clues for human cancer prevention. However, it remains unknown whether and how NMR tissues respond to experimental carcinogenesis induction. Here, we show that NMRs exhibit extraordinary resistance against potent chemical carcinogenesis induction through a dampened inflammatory response. Although carcinogenic insults damaged skin cells of both NMRs and mice, NMR skin showed markedly lower immune cell infiltration. NMRs harbour loss-of-function mutations in RIPK3 and MLKL genes, which are essential for necroptosis, a type of necrotic cell death that activates strong inflammation. In mice, disruption of Ripk3 reduced immune cell infiltration and delayed carcinogenesis. Therefore, necroptosis deficiency may serve as a cancer resistance mechanism via attenuating the inflammatory response in NMRs. Our study sheds light on the importance of a dampened inflammatory response as a non-cell-autonomous cancer resistance mechanism in NMRs.


Assuntos
Ratos-Toupeira , Necroptose , Animais , Carcinogênese , Inflamação , Camundongos , Pele
6.
Biol Rev Camb Philos Soc ; 97(1): 115-140, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34476892

RESUMO

The naked mole-rat (Heterocephalus glaber) has fascinated zoologists for at least half a century. It has also generated considerable biomedical interest not only because of its extraordinary longevity, but also because of unusual protective features (e.g. its tolerance of variable oxygen availability), which may be pertinent to several human disease states, including ischemia/reperfusion injury and neurodegeneration. A recent article entitled 'Surprisingly long survival of premature conclusions about naked mole-rat biology' described 28 'myths' which, those authors claimed, are a 'perpetuation of beautiful, but falsified, hypotheses' and impede our understanding of this enigmatic mammal. Here, we re-examine each of these 'myths' based on evidence published in the scientific literature. Following Braude et al., we argue that these 'myths' fall into four main categories: (i) 'myths' that would be better described as oversimplifications, some of which persist solely in the popular press; (ii) 'myths' that are based on incomplete understanding, where more evidence is clearly needed; (iii) 'myths' where the accumulation of evidence over the years has led to a revision in interpretation, but where there is no significant disagreement among scientists currently working in the field; (iv) 'myths' where there is a genuine difference in opinion among active researchers, based on alternative interpretations of the available evidence. The term 'myth' is particularly inappropriate when applied to competing, evidence-based hypotheses, which form part of the normal evolution of scientific knowledge. Here, we provide a comprehensive critical review of naked mole-rat biology and attempt to clarify some of these misconceptions.


Assuntos
Longevidade , Ratos-Toupeira , Animais , Biologia
7.
Adv Exp Med Biol ; 1319: 329-339, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424523

RESUMO

Stem cells play essential roles in the development and tissue homeostasis of animals and are closely associated with carcinogenesis and aging. Also, the somatic cell reprogramming process to induced pluripotent stem (iPS) cells shares several characteristics with carcinogenesis. In this chapter, we focus on iPS cells and the reprogramming process of somatic cells in the naked mole-rat (NMR), the longest-living rodent with remarkable cancer resistance capabilities. NMR somatic cells show resistance to reprogramming induction, and generated NMR-iPS cells have a unique tumor-resistant phenotype. This phenotype is regulated by expressional activation of the tumor suppressor ARF gene and loss-of-function mutation in oncogene ERAS. Notably, it was also found that NMR somatic cells undergo senescence when ARF is suppressed during reprogramming, which would contribute to the resistance to both reprogramming and cancer in NMR somatic cells. Further studies on reprogramming resistance in NMR somatic cells and their concomitant tumor resistance in NMR-iPS cells would contribute to a better understanding of both cancer resistance and delayed aging in NMRs. In addition, NMR-iPS cells can be used as a new and important cell source for advancing research concerning several extraordinary physiological characteristics of NMR. Furthermore, study of NMR-iPS cells could lead to the development of safer regenerative therapies in the future.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias , Animais , Reprogramação Celular , Ratos-Toupeira/genética , Neoplasias/genética , Oncogenes
8.
Sci Rep ; 11(1): 5725, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707548

RESUMO

Naked mole-rats (NMRs, Heterocephalus glaber) are the longest-living rodent species. A reason for their long lifespan is pronounced cancer resistance. Therefore, researchers believe that NMRs have unknown secrets of cancer resistance and seek to find them. Here, to reveal the secrets, we noticed a retrotransposon, long interspersed nuclear element 1 (L1). L1s can amplify themselves and are considered endogenous oncogenic mutagens. Since the NMR genome contains fewer L1-derived sequences than other mammalian genomes, we reasoned that the retrotransposition activity of L1s in the NMR genome is lower than those in other mammalian genomes. In this study, we successfully cloned an intact L1 from the NMR genome and named it NMR-L1. An L1 retrotransposition assay using the NMR-L1 reporter revealed that NMR-L1 was active retrotransposon, but its activity was lower than that of human and mouse L1s. Despite lower retrotrasposition activity, NMR-L1 was still capable of inducing cell senescence, a tumor-protective system. NMR-L1 required the 3' untranslated region (UTR) for retrotransposition, suggesting that NMR-L1 is a stringent-type of L1. We also confirmed the 5' UTR promoter activity of NMR-L1. Finally, we identified the G-quadruplex structure of the 3' UTR, which modulated the retrotransposition activity of NMR-L1. Taken together, the data indicate that NMR-L1 retrotranspose less efficiently, which may contribute to the cancer resistance of NMRs.


Assuntos
Genoma , Elementos Nucleotídeos Longos e Dispersos/genética , Ratos-Toupeira/genética , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Senescência Celular/genética , Células HEK293 , Humanos , Retroelementos/genética
9.
Stem Cells ; 39(3): 318-330, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33338299

RESUMO

Human mesenchymal stem/stromal cells (hMSCs) have garnered enormous interest as a potential resource for cell-based therapies. However, the molecular mechanisms regulating senescence in hMSCs remain unclear. To elucidate these mechanisms, we performed gene expression profiling to compare clonal immature MSCs exhibiting multipotency with less potent MSCs. We found that the transcription factor Frizzled 5 (FZD5) is expressed specifically in immature hMSCs. The FZD5 cell surface antigen was also highly expressed in the primary MSC fraction (LNGFR+ THY-1+ ) and cultured MSCs. Treatment of cells with the FZD5 ligand WNT5A promoted their proliferation. Upon FZD5 knockdown, hMSCs exhibited markedly attenuated proliferation and differentiation ability. The observed increase in the levels of senescence markers suggested that FZD5 knockdown promotes cellular senescence by regulating the noncanonical Wnt pathway. Conversely, FZD5 overexpression delayed cell cycle arrest during the continued culture of hMSCs. These results indicated that the intrinsic activation of FZD5 plays an essential role in negatively regulating senescence in hMSCs and suggested that controlling FZD5 signaling offers the potential to regulate hMSC quality and improve the efficacy of cell-replacement therapies using hMSCs.


Assuntos
Diferenciação Celular/fisiologia , Senescência Celular/fisiologia , Receptores Frizzled/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proliferação de Células/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Humanos , Transplante de Células-Tronco Mesenquimais/métodos
10.
Sci Rep ; 9(1): 17981, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784606

RESUMO

Naked mole rats (NMRs) have extraordinarily long lifespans and anti-tumorigenic capability. Recent studies of humans and mice have shown that many age-related diseases, including cancer, are strongly correlated with immunity, and macrophages play particularly important roles in immune regulation. Therefore, NMR macrophages may contribute to their unique phenotypes. However, studies of the roles of macrophages are limited by material restrictions and the lack of an established experimental strategy. In this study, we developed a flow cytometric strategy to identify NMR macrophages. The NMR macrophages were extractable using an off-the-shelf anti-CD11b antibody, M1/70, and forward/side scatter data obtained by flow cytometry. NMR macrophages proliferated in response to human/mouse recombinant M-CSF and engulfed Escherichia coli particles. Interestingly, the majority of NMR macrophages exhibited co-staining with an anti-NK1.1 antibody, PK136. NK1.1 antigen crosslinking with PK136 results in mouse NK cell stimulation; similarly, NMR macrophages proliferated in response to NK1.1 antibody treatment. Furthermore, we successfully established an NMR macrophage cell line, NPM1, by transduction of Simian virus 40 early region that proliferated indefinitely without cytokines and retained its phagocytotic capacity. The NPM1 would contribute to further studies on the immunity of NMRs.


Assuntos
Separação Celular/métodos , Citometria de Fluxo/métodos , Macrófagos/imunologia , Ratos-Toupeira/imunologia , Animais , Linhagem Celular , Proliferação de Células , Meios de Cultura/metabolismo , Longevidade/imunologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Nucleofosmina , Proteínas Recombinantes/metabolismo
11.
Nat Commun ; 7: 11471, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27161380

RESUMO

The naked mole-rat (NMR, Heterocephalus glaber), which is the longest-lived rodent species, exhibits extraordinary resistance to cancer. Here we report that NMR somatic cells exhibit a unique tumour-suppressor response to reprogramming induction. In this study, we generate NMR-induced pluripotent stem cells (NMR-iPSCs) and find that NMR-iPSCs do not exhibit teratoma-forming tumorigenicity due to the species-specific activation of tumour-suppressor alternative reading frame (ARF) and a disruption mutation of the oncogene ES cell-expressed Ras (ERAS). The forced expression of Arf in mouse iPSCs markedly reduces tumorigenicity. Furthermore, we identify an NMR-specific tumour-suppression phenotype-ARF suppression-induced senescence (ASIS)-that may protect iPSCs and somatic cells from ARF suppression and, as a consequence, tumorigenicity. Thus, NMR-specific ARF regulation and the disruption of ERAS regulate tumour resistance in NMR-iPSCs. Our findings obtained from studies of NMR-iPSCs provide new insight into the mechanisms of tumorigenicity in iPSCs and cancer resistance in the NMR.


Assuntos
Genes Supressores de Tumor , Células-Tronco Pluripotentes Induzidas/imunologia , Ratos-Toupeira/genética , Ratos-Toupeira/imunologia , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Mutação , Proteína Oncogênica p21(ras)/genética , Proteína Oncogênica p21(ras)/imunologia , Fases de Leitura , Teratoma/genética , Teratoma/imunologia , Neoplasias Testiculares/genética , Neoplasias Testiculares/imunologia
12.
Methods Mol Biol ; 925: 21-48, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22907488

RESUMO

Pluripotent stem cells can provide us with an enormous cell source for in vitro model systems for development. In 2006, new methodology was designed to generate pluripotent stem cells directly from somatic cells, and these cells were named induced pluripotent stem cells (iPSCs). This method consists of technically simple procedures: donor cell preparation, gene transduction, and isolation of embryonic stem cell-like colonies. The iPSC technology enables cell biologists not only to obtain pluripotent stem cells easily but also to study the reprogramming events themselves. Here, we describe the protocols to generate iPSCs from somatic origins by using conventional viral vectors. Specifically, we state the usage of three mammalian species: mouse, common marmoset, and human. As mouse iPSC donors, fibroblasts are easily prepared, while mesenchymal stem cells are expected to give rise to highly reprogrammed iPSCs efficiently. Common marmoset (Callithrix jacchus), a nonhuman primate, represents an alternative model to the usual laboratory animals. Finally, patient-specific human iPSCs give us an opportunity to examine the pathology and mechanisms of dysregulated genomic imprinting. The iPSC technology will serve as a valuable method for studying genomic imprinting, and conversely, the insights from these studies will offer valuable criteria to assess the potential of iPSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Retroviridae/genética , Transdução Genética/métodos , Animais , Células da Medula Óssea/citologia , Callithrix , Técnicas de Cultura de Células , Separação Celular , Criopreservação , Embrião de Mamíferos/citologia , Feminino , Feto/citologia , Fibroblastos/citologia , Impressão Genômica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/virologia , Lentivirus/genética , Lentivirus/fisiologia , Fígado/citologia , Células-Tronco Mesenquimais/citologia , Camundongos , Gravidez , Retroviridae/fisiologia , Cauda/citologia
13.
J Biol Chem ; 286(36): 31885-95, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21771796

RESUMO

The clustered protocadherins (Pcdhs), Pcdh-α, -ß, and -γ, are transmembrane proteins constituting a subgroup of the cadherin superfamily. Each Pcdh cluster is arranged in tandem on the same chromosome. Each of the three Pcdh clusters shows stochastic and combinatorial expression in individual neurons, thus generating a hugely diverse set of possible cell surface molecules. Therefore, the clustered Pcdhs are candidates for determining neuronal molecular diversity. Here, we showed that the targeted deletion of DNase I hypersensitive (HS) site HS5-1, previously identified as a Pcdh-α regulatory element in vitro, affects especially the expression of specific Pcdh-α isoforms in vivo. We also identified a Pcdh-ß cluster control region (CCR) containing six HS sites (HS16, 17, 17', 18, 19, and 20) downstream of the Pcdh-γ cluster. This CCR comprehensively activates the expression of the Pcdh-ß gene cluster in cis, and its deletion dramatically decreases their expression levels. Deleting the CCR nonuniformly down-regulates some Pcdh-γ isoforms and does not affect Pcdh-α expression. Thus, the CCR effect extends beyond the 320-kb region containing the Pcdh-γ cluster to activate the upstream Pcdh-ß genes. Thus, we concluded that the CCR is a highly specific regulatory unit for Pcdh-ß expression on the clustered Pcdh genomic locus. These findings suggest that each Pcdh cluster is controlled by distinct regulatory elements that activate their expression and that the stochastic gene regulation of the clustered Pcdhs is controlled by the complex chromatin architecture of the clustered Pcdh locus.


Assuntos
Caderinas/genética , Família Multigênica , Neuropeptídeos/genética , Animais , Proteínas Relacionadas a Caderinas , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Camundongos , Neurônios , Protocaderinas , Sequências Reguladoras de Ácido Nucleico
14.
PLoS One ; 6(3): e17610, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21412425

RESUMO

BACKGROUND: Induced pluripotent stem (iPS) cells are generated from mouse and human somatic cells by the forced expression of defined transcription factors. Although most somatic cells are capable of acquiring pluripotency with minimal gene transduction, the poor efficiency of cell reprogramming and the uneven quality of iPS cells are still important problems. In particular, the choice of cell type most suitable for inducing high-quality iPS cells remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here, we generated iPS cells from PDGFRα+ Sca-1+ (PαS) adult mouse mesenchymal stem cells (MSCs) and PDGFRα⁻ Sca-1⁻ osteo-progenitors (OP cells), and compared the induction efficiency and quality of individual iPS clones. MSCs had a higher reprogramming efficiency compared with OP cells and Tail Tip Fibroblasts (TTFs). The iPS cells induced from MSCs by Oct3/4, Sox2, and Klf4 appeared to be the closest equivalent to ES cells by DNA microarray gene profile and germline-transmission efficiency. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that a purified source of undifferentiated cells from adult tissue can produce high-quality iPS cells. In this context, prospectively enriched MSCs are a promising candidate for the efficient generation of high-quality iPS cells.


Assuntos
Separação Celular/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Quimera , Células Clonais , Regulação da Expressão Gênica/efeitos dos fármacos , Células Germinativas , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , Proteína Homeobox Nanog , Puromicina/farmacologia
15.
J Biol Chem ; 283(18): 12064-75, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18204046

RESUMO

The protocadherin-alpha (Pcdh-alpha) gene encodes diverse transmembrane proteins that are differentially expressed in individual neurons in the vertebrate central nervous system. The Pcdh-alpha genomic structure contains variable first exons, each regulated by its own promoter. Here, we investigated the effect of DNA methylation on gene regulation in the Pcdh-alpha gene cluster. We studied two mouse cell lines, C1300 and M3, that expressed different combinations of Pcdh-alpha isoforms and found that 1) the transcription of specific Pcdh-alpha isoforms correlated significantly with the methylation state of the promoter and the 5' (but not the 3') region of the first exon and 2) mosaic or mixed methylation states of the promoters were associated with both active and inactive transcription. Demethylation of C1300 cells up-regulated all of the Pcdh-alpha isoforms, and, in a promoter assay, hypermethylation of the promoters repressed their transcriptional activity. Cell lines subcloned from the demethylated C1300 cells transcribed different combinations of Pcdh-alpha isoforms than the parental, nondemethylated cells, and the promoters showed differential mosaic or mixed methylation patterns. In vivo, the promoter and 5'-regions of the Pcdh-alphaC1 and alphaC2 exons, which are transcribed in all neurons, were extensively hypomethylated. In contrast, the promoters of the Pcdh-alpha1 to -alpha12 isoforms, which are transcribed differentially by individual Purkinje cells, exhibited mosaic methylation patterns. Overall, our results demonstrated that mosaic or mixed DNA methylation states in the promoter and 5'-region of the first exon may help regulate differential Pcdh-alpha transcription and that hypermethylation is sufficient to repress transcription.


Assuntos
Caderinas/genética , Metilação de DNA , Família Multigênica , Transcrição Gênica , Animais , Azacitidina/farmacologia , Southern Blotting , Caderinas/metabolismo , Linhagem Celular Tumoral , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Células Clonais , Ilhas de CpG/genética , Metilação de DNA/efeitos dos fármacos , Enzimas de Restrição do DNA/metabolismo , Éxons/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma/genética , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Família Multigênica/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA