RESUMO
Mouse embryonic stem cells (mESCs) are biased toward producing embryonic rather than extraembryonic endoderm fates. Here, we identify the mechanism of this barrier and report that the histone deacetylase Hdac3 and the transcriptional corepressor Dax1 cooperatively limit the lineage repertoire of mESCs by silencing an enhancer of the extraembryonic endoderm-specifying transcription factor Gata6. This restriction is opposed by the pluripotency transcription factors Nr5a2 and Esrrb, which promote cell type conversion. Perturbation of the barrier extends mESC potency and allows formation of 3D spheroids that mimic the spatial segregation of embryonic epiblast and extraembryonic endoderm in early embryos. Overall, this study shows that transcriptional repressors stabilize pluripotency by biasing the equilibrium between embryonic and extraembryonic lineages that is hardwired into the mESC transcriptional network.
Assuntos
Receptor Nuclear Órfão DAX-1 , Histona Desacetilases , Células-Tronco Embrionárias Murinas/citologia , Animais , Diferenciação Celular , Células Cultivadas , Receptor Nuclear Órfão DAX-1/genética , Receptor Nuclear Órfão DAX-1/metabolismo , Feminino , Fator de Transcrição GATA6/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Masculino , Camundongos , RNA Interferente Pequeno/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismoRESUMO
SIRT3 is a member of the sirtuin family and has recently emerged as a vital molecule in controlling the generation of reactive oxygen species (ROS) in oocytes. Appropriate levels of ROS play pivotal roles in human reproductive medicine. The aim of the present study was to investigate SIRT3 expression and analyze the SIRT3-mediated oxidative response in human luteinized granulosa cells (GCs). Human ovarian tissues were subjected to immunohistochemical analysis to localize SIRT3 expression. Hydrogen peroxide and human chorionic gonadotropin were used to analyze the relationship between ROS and SIRT3 by quantitative RT-PCR and Western blotting. Intracellular levels of ROS were investigated by fluorescence after small interfering RNA-mediated knockdown of SIRT3 in human GCs. To uncover the role of SIRT3 in folliculogenesis and luteinization, mRNA levels of related genes and the progesterone concentration were analyzed by quantitative RT-PCR and immunoassays, respectively. We detected the expression of SIRT3 in the GCs of the human ovary. The mRNA levels of SIRT3, catalase, and superoxide dismutase 1 were up-regulated by hydrogen peroxide in both COV434 cells and human GCs and down-regulated by human chorionic gonadotropin. Knockdown of SIRT3 markedly elevated ROS generation in human GCs. In addition, SIRT3 depletion resulted in decreased mRNA expression of aromatase, 17ß-hydroxysteroid dehydrogenase 1, steroidogenic acute regulatory protein, cholesterol side-chain cleavage enzyme, and 3ß-hydroxysteroid dehydrogenase in GCs and thus resulted in decreased progesterone secretion. These results have the important clinical implication that SIRT3 might play a positive role in the folliculogenesis and luteinization processes in GCs, possibly by sensing and regulating the generation of ROS. Activation of SIRT3 function might help to sustain human reproduction by maintaining GCs as well as oocytes.
Assuntos
Células da Granulosa/metabolismo , Luteinização , Estresse Oxidativo , Progesterona/metabolismo , Sirtuína 3/fisiologia , Adulto , Antioxidantes/metabolismo , Catalase/metabolismo , Linhagem Celular Tumoral , Gonadotropina Coriônica , Feminino , Humanos , Folículo Ovariano/fisiologia , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1RESUMO
Sirtuins are a phylogenetically conserved NAD+-dependent protein deacetylase/ADP-ribosyltransferase family implicated in diverse biological processes. Several family members localize to mitochondria, the function of which is thought to determine the developmental potential of preimplantation embryos. We have therefore characterized the role of sirtuins in mouse preimplantation development under in vitro culture conditions. All sirtuin members were expressed in eggs, and their expression gradually decreased until the blastocyst stage. Treatment with sirtuin inhibitors resulted in increased intracellular ROS levels and decreased blastocyst formation. These effects were recapitulated by siRNA-induced knockdown of Sirt3, which is involved in mitochondrial energy metabolism, and in Sirt3-/- embryos. The antioxidant N-acetyl-L-cysteine and low-oxygen conditions rescued these adverse effects. When Sirt3-knockdown embryos were transferred to pseudopregnant mice after long-term culture, implantation and fetal growth rates were decreased, indicating that Sirt3-knockdown embryos were sensitive to in vitro conditions and that the effect was long lasting. Further experiments revealed that maternally derived Sirt3 was critical. Sirt3 inactivation increased mitochondrial ROS production, leading to p53 upregulation and changes in downstream gene expression. The inactivation of p53 improved the developmental outcome of Sirt3-knockdown embryos, indicating that the ROS-p53 pathway was responsible for the developmental defects. These results indicate that Sirt3 plays a protective role in preimplantation embryos against stress conditions during in vitro fertilization and culture.