RESUMO
BACKGROUND: Successful recovery from acute lung injury requires inhibition of neutrophil influx and clearance of apoptotic neutrophils. However, the mechanisms underlying recovery remain unclear. We investigated the ameliorative effects of vascular endothelial growth factor (VEGF)-C/VEGF receptor 3 (VEGFR-3) signalling in macrophages in lipopolysaccharide (LPS)-induced lung injury. METHODS: LPS was intranasally injected into wild-type and transgenic mice. Gain and loss of VEGF-C/VEGFR-3 signalling function experiments employed adenovirus-mediated intranasal delivery of VEGF-C (Ad-VEGF-C vector) and soluble VEGFR-3 (sVEGFR-3) or anti-VEGFR-3 blocking antibodies and mice with a deletion of VEGFR-3 in myeloid cells. RESULTS: The early phase of lung injury was significantly alleviated by the overexpression of VEGF-C with increased levels of bronchoalveolar lavage (BAL) fluid interleukin-10 (IL-10), but worsened in the later phase by VEGFR-3 inhibition upon administration of Ad-sVEGFR-3 vector. Injection of anti-VEGFR-3 antibodies to mice in the resolution phase inhibited recovery from lung injury. The VEGFR-3-deleted mice had a shorter survival time than littermates and more severe lung injury in the resolution phase. Alveolar macrophages in the resolution phase digested most of the extrinsic apoptotic neutrophils and VEGF-C/VEGFR-3 signalling increased efferocytosis via upregulation of integrin αv in the macrophages. We also found that incubation with BAL fluid from acute respiratory distress syndrome (ARDS) patients, but not from controls, decreased VEGFR-3 expression and the efficiency of IL-10 expression and efferocytosis in human monocyte-derived macrophages. CONCLUSIONS: VEGF-C/VEGFR-3 signalling in macrophages ameliorates experimental lung injury. This mechanism may also provide an explanation for ARDS resolution.
Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/metabolismo , Animais , Humanos , Interleucina-10/efeitos adversos , Interleucina-10/metabolismo , Lipopolissacarídeos , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
BACKGROUND AND AIMS: Dutch tomato cultivars tend to have a greater yield than Japanese cultivars even if they are grown under the same conditions. Factors contributing to the increased yield of the Dutch cultivars were a greater light use efficiency and greater leaf photosynthetic rate. On the other hand, the relationship between tomato yields and anatomical traits is still unclear. The aim of this study is to identify the anatomical traits related to the difference in yield between Dutch and Japanese cultivars. METHODS: Anatomical properties were compared during different growth stages of Dutch and Japanese tomatoes. Hormone profiles and related gene expression in hypocotyls of Dutch and Japanese cultivars were compared in the hypocotyls of 3- and 4-week-old plants. KEY RESULTS: Dutch cultivars have a more developed secondary xylem than Japanese cultivars, which would allow for greater transport of water, mineral nutrients and phytohormones to the shoots. The areas and ratios of the xylem in the hypocotyls of 3- to 6-week-old plants were larger in the Dutch cultivars. In reciprocal grafts of the Japanese and Dutch cultivars, xylem development at the scion and rootstock depended on the scion cultivar, suggesting that some factors in the scion are responsible for the difference in xylem development. The cytokinin content, especially the level of N6-(Δâ2-isopentenyl) adenine (iP)-type cytokinin, was higher in the Dutch cultivars. This result was supported by the greater expression of Sl-IPT3 (a cytokinin biosynthesis gene) and Sl-RR16/17 (a cytokinin-responsive gene) in the Dutch cultivars. CONCLUSIONS: These results suggest that iP-type cytokinins, which are locally synthesized in the hypocotyl, contribute to xylem development. The greater xylem development in Dutch cultivars might contribute to the high yield of the tomato.
Assuntos
Solanum lycopersicum/genética , Citocininas , Hipocótilo/genética , Japão , XilemaRESUMO
CRIM1 is a membrane protein that has been reported to be related to cell proliferation. CRIM1 is expressed in renal carcinoma cells, but its involvement in proliferation and malignant transformation remains unclear. We analyzed whether alterations in the characteristics of cancer cells are observed following knockdown of CRIM1. Decreased expression of CRIM1 did not affect proliferation or anchorage-independent growth. The results of wound healing and invasion assays showed that reduced expression of CRIM1 increased cells' migratory and invasive abilities. Expression analysis of factors involved in migration and invasion in CRIM1-knockdown cells revealed that expression of the cell adhesion factor E-cadherin declined and expression of claudin-1, which is upregulated in metastatic cancer cells, increased. In addition, increased expression of matrix metalloproteinase (MMP) 2 and MMP9, protease essential for cancer cell invasiveness, was observed. Furthermore, an increase in phosphorylated focal adhesion kinase (FAK), which increases cell migration, was observed. Increased expression of the E-cadherin transcription repressors Snail, Slug, and ZEB-1 were observed, and mRNA levels of E-cadherin were decreased. Therefore, expression of E-cadherin is thought to be decreased by both suppression of E-cadherin mRNA expression and promotion of degradation of the E-cadherin protein. In addition, expression of CRIM1 was decreased in renal cancer cells undergoing epithelial-mesenchymal transition (EMT) stimulated by tumor necrosis factor alpha (TNF-α). Thus, CRIM1 regulates the expression of several EMT-related factors and appears to play a role in suppressing migration and invasion through control of EMT.
Assuntos
Caderinas/genética , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Proteínas de Membrana/metabolismo , Antígenos CD , Receptores de Proteínas Morfogenéticas Ósseas , Caderinas/metabolismo , Linhagem Celular Tumoral , Claudina-1/metabolismo , Transição Epitelial-Mesenquimal , Humanos , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
A prognostic association between the novel chaperone protein-L-isoaspartate (D-aspartate) O-methyltransferase (PIMT) and lung adenocarcinoma has recently been reported. Here, we evaluated the functional roles of PIMT in the progression of lung adenocarcinoma. PIMT expression was detectable in 6 lung adenocarcinoma cell lines: A549, H441, H460, H1650, Calu 1, and Calu 6 cell lines. In A549 and H441 cells, knockdown by PIMT using silencing RNA of PIMT (si-PIMT) and/or small hairpin-RNA (sh-PIMT) induced a decrease in the expression of E-cadherin with an increase in vimentin expression, indicating that the epithelial to mesenchymal transition (EMT) was induced. Cell mobility, including migration and invasion capability, was increased in sh-PIMT A549 stable and si-PIMT H441 cells compared to in control cells. Endoplasmic reticulum (ER) stress, such as Thapsigargin (Tg) stress and hypoxia, induced EMT in A549 cells but not in other cell types, with an increase in GRP78 expression, whereas overexpression of PIMT reduced the EMT and cell invasion under stress conditions. The expression of hypoxia inducible factor-1 alpha (HIF1α) and Twist increased in sh-PIMT A549 and si-PIMT H441 cells, and Tg stress increased HIF1α expression levels in A549 cells in a dose-dependent manner. Moreover, LW6, an HIF1α inhibitor, reduced EMT, cancer invasion, and the levels of Twist in sh-PIMT A549 cells. Our results indicate that deficiency of supplemental PIMT expression under ER stress facilitates EMT and cell invasion in some cell types of lung adenocarcinoma.
RESUMO
Aralin from Aralia elata is a newly identified type II ribosome- inactivating protein, which preferentially induces apoptosis in cancer cells. In this study, we identified that the aralin receptor is a 110-kDa high-density lipoprotein-binding protein (HDLBP), which functions as a HDL receptor. The sensitivities of tumor cell lines to aralin were dependent on the expression levels of the 110-kDa HDLBP and its forced expression in aralin-resistant Huh7 cells conferred aralin sensitivity. HDLBP-knockdown HeLa cells showed a significant aralin resistance in vitro and in vivo. Conversely, ectopic expression of the 150-kDa HDLBP resulted in increased aralin sensitivity in vivo, accompanying enhanced expression of the 110-kDa HDLBP. Thus, these results showed that the 110-kDa HDLBP in lipid rafts acted as an aralin receptor and that its expression levels determined aralin sensitivity, suggesting that aralin could be a promising anticancer drug for HDLBP-overexpressing tumors.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proteínas de Ligação a RNA/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 2/farmacologia , Administração Oral , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Aralia/química , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Células HeLa , Células Hep G2 , Humanos , Lipoproteínas HDL/antagonistas & inibidores , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos Nus , Peso Molecular , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Receptores de Lipoproteínas/antagonistas & inibidores , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 2/química , Proteínas Inativadoras de Ribossomos Tipo 2/farmacocinética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Acute respiratory distress syndrome is a serious condition that can arise following direct or indirect lung injury. It is heterogeneous and has a high mortality rate. Supportive care is the mainstay of treatment and there is no definitive pharmacological treatment as yet. Sivelestat is a neutrophil elastase inhibitor approved in Japan and the Republic of Korea for acute lung injury, including acute respiratory distress syndrome in patients with systemic inflammatory response syndrome. The aim of this review is to examine the clinical utility of sivelestat in different disease states, using data from nonclinical and clinical studies. In nonclinical studies, sivelestat appears to show benefit in acute lung injury without inhibiting the host immune defense in cases of infection. Clinical studies do not yet provide a clear consensus. Phase III and IV Japanese studies have shown improvements in pulmonary function, length of intensive care unit stay, and mechanical ventilation, but a non-Japanese multicenter study did not demonstrate sivelestat to have an effect on ventilator-free days or 28-day all-cause mortality. Evidence of improvement in various parameters, including duration of stay in intensive care, mechanical ventilation, the ratio of partial pressure of arterial oxygen and fraction of inspired oxygen (PaO2/FIO2 ratio) ratio, and lung injury scores, has been shown in patients with sepsis or gastric aspiration, and following the surgical treatment of esophageal cancer. To date, there are no particular concerns regarding adverse events, and the available data do not suggest that sivelestat might worsen infections. One study has analyzed cost-effectiveness, finding that sivelestat may reduce costs compared with standard care. The currently available evidence suggests that sivelestat may show some benefit in the treatment of acute lung injury/acute respiratory distress syndrome, although large, randomized controlled trials are needed in specific pathophysiological conditions to explore these potential benefits.
RESUMO
PRP19alpha and CDC5L are major components of the active spliceosome. However, their association process is still unknown. Here, we demonstrated that PRP19 alpha/14-3-3beta/CDC5L complex formation is regulated by Akt during nerve growth factor (NGF)-induced neuronal differentiation of PC12 cells. Analysis of PRP19 alpha mutants revealed that the phosphorylation of PRP19 alpha at Thr 193 by Akt was critical for its binding with 14-3-3beta to translocate into the nuclei and for PRP19 alpha/14-3-3beta/CDC5L complex formation in neuronal differentiation. Forced expression of either sense PRP19 alpha or sense 14-3-3beta RNAs promoted NGF-induced neuronal differentiation, whereas down-regulation of these mRNAs showed a suppressive effect. The nonphosphorylation mutant PRP19 alpha T193A lost its binding ability with 14-3-3beta and acted as a dominant-negative mutant in neuronal differentiation. These results imply that Akt-dependent phosphorylation of PRP19 alpha at Thr193 triggers PRP19 alpha/14-3-3beta/CDC5L complex formation in the nuclei, likely to assemble the active spliceosome against neurogenic pre-mRNAs.
Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Neurônios/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteína Oncogênica v-akt/metabolismo , Animais , Células COS , Diferenciação Celular/efeitos dos fármacos , Chlorocebus aethiops , Eletroforese em Gel Bidimensional/métodos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Imunoprecipitação/métodos , Fator de Crescimento Neural/farmacologia , Neurônios/efeitos dos fármacos , Células PC12 , Fosforilação , Inibidores da Síntese de Proteínas/farmacologia , Ratos , Tetraciclina/farmacologia , Treonina/metabolismoRESUMO
This research focused on three major questions regarding benzene-induced hematopoietic neoplasms (HPNs). First, why are HPNs induced equivocally and at only threshold level with low-dose benzene exposure despite the significant genotoxicity of benzene even at low doses both in experiments and in epidemiology? Second, why is there no linear increase in incidence at high-dose exposure despite a lower acute toxicity (LD(50) > 1000 mg/kg body weight; WHO, 2003, Benzene in drinking-water. Background document for development of WHO Guidelines for Drinking-Water Quality)? Third, why are particular acute myeloid leukemias (AMLs) not commonly observed in mice, although AMLs are frequently observed in human cases of occupational exposure to benzene? In this study, we hypothesized that the threshold-like equivocal induction of HPNs at low-dose benzene exposure is based on DNA repair potential in wild-type mice and that the limited increase in HPNs at a high-dose exposure is due to excessive apoptosis in wild-type mice. To determine whether Trp53 deficiency satisfies the above hypotheses by eliminating or reducing DNA repair and by allowing cells to escape apoptosis, we evaluated the incidence of benzene-induced HPNs in Trp53-deficient C57BL/6 mice with specific regard to AMLs. We also used C3H/He mice, AML prone, with Trp53 deficiency to explore whether a higher incidence of AMLs on benzene exposure might explain the above human-murine differences. As a result, heterozygous Trp53-deficient mice of both strains showed a nonthreshold response of the incidence of HPNs at the lower dose, whereas both strains showed an increasing HPN incidence up to 100% with increasing benzene exposure dose, including AMLs, that developed 38% of heterozygous Trp53-deficient C3H/He mice compared to only 9% of wild-type mice exposed to the high dose. The detection of AMLs in heterozygous Trp53-deficient mice, even in the C57BL/6 strain, implies that benzene may be a potent inducer of AMLs also in mice with some strain differences.
Assuntos
Benzeno/toxicidade , Carcinógenos/toxicidade , Neoplasias Hematológicas/induzido quimicamente , Leucemia Mieloide Aguda/induzido quimicamente , Proteína Supressora de Tumor p53/deficiência , Animais , Apoptose/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Heterozigoto , Exposição por Inalação , Dose Letal Mediana , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade da Espécie , Fatores de Tempo , Proteína Supressora de Tumor p53/genéticaRESUMO
The 14-3-3 proteins form a highly conserved family of dimeric proteins that interact with various signal transduction proteins and regulate cell cycle, apoptosis, stress response, and malignant transformation. We previously demonstrated that the beta isoform of 14-3-3 proteins promotes tumorigenicity and angiogenesis of rat hepatoma K2 cells. In this study, to analyze the mechanism of 14-3-3beta-induced malignant transformation, yeast two-hybrid screening was performed, and a novel 14-3-3beta-binding factor, FBI1 (fourteen-three-three beta interactant 1), was identified. In vitro binding and co-immunoprecipitation analyses verified specific interaction of 14-3-3beta with FBI1. The strong expression of FBI1 was observed in several tumor cell lines but not in non-tumor cell lines. Forced expression of antisense FBI1 in K2 cells inhibited anchorage-independent growth but had no significant effect on cell proliferation in monolayer culture. Down-regulation of FBI1 also inhibited tumorigenicity and metastasis accompanying a decrease in MMP-9 (matrix metalloproteinase-9) expression. In addition, the duration of ERK1/2 activation was curtailed in antisense FBI1-expressing K2 cells. A luciferase reporter assay revealed that the FBI1-14-3-3beta complex could act as a transcriptional silencer, and MKP-1 (MAPK phosphatase-1) was one of the target genes of the FBI1-14-3-3beta complex. Moreover, chromatin immunoprecipitation analysis demonstrated that FBI1 and 14-3-3beta were presented on the MKP-1 promoter. These results indicate that FBI1 promotes sustained ERK1/2 activation through repression of MKP-1 transcription, resulting in promotion of tumorigenicity and metastasis.
Assuntos
Proteínas 14-3-3/metabolismo , Transformação Celular Neoplásica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteínas 14-3-3/genética , Animais , Apoptose , Sequência de Bases , Ciclo Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/genética , Dimerização , Regulação para Baixo , Fosfatase 1 de Especificidade Dupla/biossíntese , Fosfatase 1 de Especificidade Dupla/genética , Ativação Enzimática , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Metástase Neoplásica , Proteínas de Neoplasias/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Regiões Promotoras Genéticas/genética , Ratos , Ratos Endogâmicos F344 , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Técnicas do Sistema de Duplo-HíbridoRESUMO
OBJECTIVE: Reactive oxygen species (ROS), generated following benzene exposure, are considered to trigger the development of hematopoietic neoplasms, although little supporting evidence has been found. In this study, we examined whether the experimental elimination of ROS generated following benzene exposure prevents the development of benzene-induced hematopoietic disorders to clarify the mechanism underlying the development of benzene-induced hematopoietic disorders. METHODS: C57BL/6 mice, overexpressing human thioredoxin (h-Trx-Tg), were used to examine the possible nullification of ROS induction following benzene exposure. The experimental group was exposed to 300 ppm benzene 6 hours/day, 5 days/week, for 26 weeks, and lifetime observation followed by molecular and histopathological examinations were carried out. RESULTS: The present study using h-Trx-Tg mice showed a complete suppression of the development of thymic lymphoma induced by benzene inhalation (0% in h-Trx-Tg vs 30% in wild-type (Wt) mice). This was associated with a 48% decrease in the incidence of clastogenic micronucleated reticulocyte induction in the h-Trx-Tg mice compared with the Wt control after 2 weeks of inhalation. As underlying mechanisms, the attenuation of oxidative stress was accompanied by a complete abrogation of hemato-lymphoid toxicity, as shown by the upregulation of the activity of superoxide-dismutase, and a consequently stable ROS level, as determined by cell sorting using 2', 7'-dichlorodihydrofluorescein diacetate, along with a significant attenuation of the overexpression of a cell cycle-dependent kinase inhibitor, p21. CONCLUSION: The attenuation of benzene-induced oxidative stress and that of the consequent lymphomagenesis were observed for the first time, and these indicate a role of oxidative stress in benzene-induced clastogenesis and lymphomagenesis. (These attenuations were not seen in nonthymic lymphomas, and no leukemias developed in C57BL/6 used in this study.) During the constitutive overexpression of h-Trx, the expression of aryl-hydrocarbon receptor in h-Trx-Tg mice was downregulated, which may also contribute to the attenuation.
Assuntos
Linfoma de Burkitt/prevenção & controle , Doenças Hematológicas/prevenção & controle , Imunidade Inata/genética , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/genética , Animais , Benzeno/toxicidade , Linfoma de Burkitt/induzido quimicamente , Linfoma de Burkitt/genética , Carcinógenos/toxicidade , Inibidor de Quinase Dependente de Ciclina p21/genética , Citocromo P-450 CYP2E1/genética , Regulação para Baixo , Genótipo , Doenças Hematológicas/induzido quimicamente , Doenças Hematológicas/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , RNA Mensageiro/genética , Receptores de Hidrocarboneto Arílico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Taxa de Sobrevida , Tiorredoxinas/biossíntese , Timo/efeitos dos fármacos , Timo/metabolismo , Timo/patologiaRESUMO
The pulmonary pathogenesis triggered by benzene exposure was studied. Since the role of the connexin 32 (Cx32) gap junction protein in mouse pulmonary pathogenesis has been suggested, in the present study, we explored a possible role of Cx32 in benzene-induced pulmonary pathogenesis using the wild-type (WT) and Cx32 knockout (KO) mice. The mice were exposed to 300 ppm benzene by inhalation for 6 h per day, 5 days per week for a total of 26 weeks, and then sacrificed to evaluate the pneumotoxicity or allowed to live out their life span to evaluate the reversibility of the lesions and tumor incidence. Our results clearly revealed exacerbated pneumotoxicity in the benzene-exposed Cx32 KO mice, characterized by diffuse granulomatous interstitial pneumonia, markedly increased mucin secretion of bronchial/bronchiolar and alveolar epithelial cells, and hyperplastic alveolar epithelial cells positive for CYP2E1. But the results did not indicate any enhancement of pulmonary tumorigenesis in the Cx32 KO mice though the number of animals was small.
Assuntos
Benzeno/toxicidade , Conexinas/genética , Citocromo P-450 CYP2E1/biossíntese , Células Epiteliais/efeitos dos fármacos , Alvéolos Pulmonares/efeitos dos fármacos , Administração por Inalação , Animais , Peso Corporal/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Feminino , Genótipo , Imuno-Histoquímica , Doenças Pulmonares Intersticiais/induzido quimicamente , Doenças Pulmonares Intersticiais/enzimologia , Doenças Pulmonares Intersticiais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucinas/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Antígeno Nuclear de Célula em Proliferação/biossíntese , Alvéolos Pulmonares/enzimologia , Alvéolos Pulmonares/patologia , Proteína beta-1 de Junções ComunicantesRESUMO
Although the mechanisms underlying benzene-induced toxicity and leukemogenicity are not yet fully understood, they are likely to be complicated by various pathways, including those of metabolism, growth factor regulation, oxidative stress, DNA damage, cell cycle regulation, and programmed cell death. With this as a background, we performed cDNA microarray analyses on mouse bone marrow tissue during and after a 2-week benzene exposure by inhalation. Our goal was to clarify the mechanisms underlying the hematotoxicity and leukemogenicity induced by benzene at the level of altered multigene expression. Because a few researchers have postulated that the cell cycle regulation mediated by p53 is a critical event for benzene-induced hematotoxicity, the present study was carried out using p53-knockout (KO) mice and C57BL/6 mice. On the basis of the results of large-scale gene expression studies, we conclude the following: (a) Benzene induces DNA damage in cells at any phase of the cell cycle through myeloperoxidase and in the redox cycle, resulting in p53 expression through Raf-1 and cyclin D-interacting myb-like protein 1. (b) For G1/S cell cycle arrest, the p53-mediated pathway through p21 is involved, as well as the pRb gene-mediated pathway. (c) Alteration of cyclin G1 and Wee-1 kinase genes may be related to the G2/M arrest induced by benzene exposure. (d) DNA repair genes such as Rad50 and Rad51 are markedly downregulated in p53-KO mice. (e) p53-mediated caspase 11 activation, aside from p53-mediated Bax gene induction, may be an important pathway for cellular apoptosis after benzene exposure. Our results strongly suggest that the dysfunction of the p53 gene, possibly caused by strong and repeated genetic and epigenetic effects of benzene on candidate leukemia cells, may induce fatal problems such as those of cell cycle checkpoint, apoptosis, and the DNA repair system, finally resulting in hemopoietic malignancies. Our cDNA microarray data provide valuable information for future investigations of the mechanisms underlying the toxicity and leukemogenicity of benzene.
Assuntos
Benzeno/efeitos adversos , Medula Óssea/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Doenças Hematológicas/induzido quimicamente , Leucemia/induzido quimicamente , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Administração por Inalação , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Benzeno/administração & dosagem , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Genes p53/genética , Doenças Hematológicas/genética , Leucemia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL/genéticaRESUMO
2,3,3,3,2',3',3',3'-Octachlorodipropyl ether (Abbreviation; S-421) is originally developed as synergist of a pyrethroid insecticide. In recent years, S-421 is used widely at home, for a mosquito-repellent incense, electric mosquito-repellent, an insect-killing spray, a vacuum cleaner paper pack, etc. as well. On the other hand, S-421 has been detected in vacuum cleaner dust samples as well as human milk samples in Japan indicating that our living environment is already contaminated by this compound. Long term toxicity studies including a carcinogenesis study have been performed and NOEL of chronic toxicity has been settled. However, it is clear that S-421 is used in close proximity so that acute or subacute exposure at relatively higher dose levels than chronic NOEL values are easily assumed, such as use of a spray in an ill-ventilated room, etc. This study, 28 day repeated oral dose toxicity study of S-421 was performed to monitor the outcome of acute and subacute exposure assuming possible exposure accidents mentioned above. The protocol is as follows; Groups of 10 rats of each sex(5 week-old), were treated with intragastric administration of S-421 with a dose of 0 (olive oil, control), 10, 40, 160 or 640 mg/kg body weight. For recovery test, 14 day after the last treatment, the control and 640 mg/kg groups were examined, respectively. All animals of all groups in both sexes survived. In the 640 mg/kg groups of the both sexes, all animals were set to drowsiness from about 5 hours after administration, however, they recovered by the next morning. In the hematology examination, Hb, MCH, MCHC, WBC values were significantly decreased and MCV value was significant increased in the 640 mg/kg group of both sexes. In the serum biochemistry, items increased in the 640 mg/kg groups of both sexes returned to normal level after 14 days recovery period. Absolute and relative liver weight increase seen in the 160 mg/kg and above also returned to control level after recovery. Histopathologically, slight hepatocellular swelling was observed in the 160 mg/kg groups and severe hepatocellular swelling with vacuolization and slight necrosis was seen in the 640 mg/kg group. In conclusion, the no-observed-effect levels (NOEL) of S-421 under these conditions was judged to be 40 mg/kg/day.
Assuntos
Éteres/toxicidade , Inseticidas/toxicidade , Administração Oral , Animais , Células Sanguíneas/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Éteres/administração & dosagem , Feminino , Hipertrofia , Inseticidas/administração & dosagem , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Necrose , Nível de Efeito Adverso não Observado , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Wistar , Fatores de Tempo , Testes de Toxicidade Aguda/métodosRESUMO
Benzene can induce hematotoxicity and leukemia in humans and mice. Since a review of the literature shows that the CYP2E1 knockout mouse is not known to possess any benzene toxicity, the metabolism of benzene by CYP2E1 in the liver is regarded to be prerequisite for its cytotoxicity and genotoxicity, although the mechanism is not fully understood yet. Because it was found some years ago that benzene was also a substrate for CYP1A1, we investigated the involvement of the aryl hydrocarbon receptor (AhR) in benzene hematotoxicity using AhR wild-type (AhR(+/+)), heterozygous (AhR(+/-)), and homozygous (AhR(-/-)) male mice. Interestingly, following a 2-week inhalation of 300 ppm benzene (a potent dose for leukemogenicity), no hematotoxicity was induced in AhR(-/-) mice. Further, there were no changes in cellularity of peripheral blood and bone marrow (BM), nor in levels of granulocyte-macrophage colony-forming units in BM. This lack of hematotoxicity was associated with the lack of p21 overexpression, which was regularly seen in the wild-type mice following benzene inhalation. Combined treatment with two major benzene metabolites, phenol and hydroquinone, induced hemopoietic toxicity, although it was not known whether this happened due to a surprising lack of expression of CYP2E1 by AhR knockout, or due to a lack of other AhR-mediated CYP enzymes, including 1A1 (i.e., a possible alternative pathway of benzene metabolism). The former possibility, evaluated in the present study, failed to show a significant relationship between AhR and the expression of CYP2E1. Furthermore, a subsequent evaluation of AhR expression after benzene inhalation tended to show higher but less significant expression in the liver, and none in the BM, compared with sham control. Although this study failed to identify the more likely of the above-mentioned two possibilities, the study using AhR knockout mice on benzene inhalation presents the unique possibility that the benzene toxicity may be regulated by AhR signaling.