Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2023: 7133726, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38058393

RESUMO

The tumor microenvironment (TME) is thought to influence the antitumor efficacy of immuno-oncology agents through various products of both tumor and stromal cells. One immune-suppressive factor is prostaglandin E2 (PGE2), a lipid mediator whose biosynthesis is regulated by ubiquitously expressed cyclooxygenase- (COX-) 1 and inducible COX-2. By activating its receptors, PGE2 induces immune suppression to modulate differentiation of myeloid cells into myeloid-derived suppressor cells (MDSCs) rather than dendritic cells (DCs). Pharmacological blockade of prostaglandin E receptor 4 (EP4) causes a decrease in MDSCs, reprogramming of macrophage polarization, and increase in tumor-infiltrated T cells, leading to enhancement of antitumor immunity in preclinical models. Here, we report the effects of the highly potent EP4 antagonist ASP7657 on the DC population in tumor and antitumor immune activation in an immunocompetent mouse tumor model. Oral administration of ASP7657 inhibited tumor growth, which was accompanied by an increase in intratumor DC and CD8+ T cell populations and a decrease in the M-MDSC population in a CT26 immunocompetent mouse model. The antitumor activity of ASP7657 was dependent on CD8+ T cells and enhanced when combined with an antiprogrammed cell death-1 (PD-1) antibody. Notably, ASP7657 also significantly enhanced the antitumor efficacy of radiotherapy in an anti-PD-1 antibody refractory model. These results indicate that the therapeutic potential of ASP7657 arises via upregulation of DCs and subsequent CD8+ T cell activation in addition to suppression of MDSCs in mouse models and that combining EP4 antagonists with radiotherapy or an anti-PD-1 antibody can improve antitumor efficacy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Camundongos , Diferenciação Celular , Ciclo-Oxigenase 2 , Indóis/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Microambiente Tumoral
2.
Int Immunopharmacol ; 87: 106764, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32736191

RESUMO

Phosphoinositide 3-kinases generate lipid-based second messengers that control an array of intracellular signaling pathways. In particular, phosphoinositide 3-kinases delta (PI3Kδ) is expressed primarily in hematopoietic cells and plays an important role in B-cell development and function. B cells play a critical role in autoimmune diseases by producing autoantibodies. Studies have therefore increasingly focused on PI3Kδ as a therapeutic target for the treatment of inflammatory and autoimmune diseases. One such autoimmune disease is systemic lupus erythematosus (SLE). SLE is a chronic systemic autoimmune disease with repeated recurrence and remission, and autoantibodies play an important role in its pathogenesis. Here, we examined the pharmacological profile of the novel PI3Kδ selective inhibitor AS2819899 and investigated its therapeutic potential against SLE in a NZB/W F1 mouse lupus-like nephritis model, a widely-used SLE mouse model. AS2819899 prevented B and T cell activation in vitro, and inhibited antibody production in a T-cell independent de novo antibody production mouse model. In the spontaneous NZB/W F1 mouse model, AS2819899 treatment significantly reduced anti-dsDNA antibody titers and improved kidney dysfunction. Further, AS2819899 inhibited the memory recall reaction in a T-cell dependent antibody production mouse model, suggesting that AS2819899 can potentially maintain remission of SLE. Moreover, we identified a pharmacodynamics marker for AS2819899 that may be useful in clinical studies. These results indicate that AS2819899 may be an attractive therapeutic candidate for SLE, including the maintenance of remission.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Nefrite Lúpica/tratamento farmacológico , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Modelos Animais de Doenças , Feminino , Imunoglobulina M/imunologia , Nefrite Lúpica/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NZB , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
3.
Biointerphases ; 15(2): 021008, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32241114

RESUMO

Matrix effects, which cause a change in ion intensity, occur in mass spectrometry methods including time-of-flight secondary ion mass spectrometry (TOF-SIMS). Matrix effects often cause large issues in quantitative analysis because secondary ions related to a particular molecule could be dramatically enhanced or suppressed regardless of the concentration. To investigate matrix effects in biological samples, the authors evaluated mixed lipid {POPC [1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine, molecular weight (MW) 759.6]}, peptide [leu-enkephalin, neo-leu-enkephalin (amino acid sequence: YAGFL, MW 569.3), and neo-angiotensin II (amino acid sequence: DRVYIHAF, MW 1019.5)] samples. Matrix effect features were investigated by analyzing the concentration dependence of secondary ions in lipid-peptide mixed samples to develop a method that enables quantitative analysis using TOF-SIMS. Matrix effects depended on the lipid-peptide combination. Interestingly, some secondary ions possessed an intensity that was highly dependent on concentration.


Assuntos
Lipídeos/análise , Peptídeos/análise , Espectrometria de Massa de Íon Secundário , Angiotensina II/análise , Encefalina Leucina/análise , Fosfatidilcolinas/química
4.
Eur J Pharmacol ; 826: 179-186, 2018 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-29518396

RESUMO

B cell-mediated antibodies play a critical role in protecting the body from infections; however, excessive antibody production is involved in the pathogenesis of autoimmune diseases and transplanted organ rejection. Regulation of antibody production is therefore crucial for overcoming these complications. Phosphatidylinositol-3-kinase p110δ (PI3Kδ), a member of the family of PI3K lipid kinases, is a key mediator of B cell activation and proliferation, with a small molecule PI3Kδ inhibitor having been approved for the treatment of B cell lymphoma. However, the effect of PI3Kδ inhibitors on B cell-mediated antibody production has not been clearly elucidated. In this study, we investigated the effect of the selective PI3Kδ inhibitor, AS2541019, on B cell immunity and antibody production. Our results show that AS2541019 effectively prevented B cell activation and proliferation in vitro, and that oral administration of AS2541019 resulted in significant inhibition of both T-dependent and T-independent de novo antibody production in peripheral blood. Further, in a hamster to rat concordant xenotransplant model, AS2541019 significantly prolonged graft survival time by inhibiting xenoreactive antibody production. Therefore, our study demonstrates that the selective PI3Kδ inhibitor AS2541019 inhibits antibody production through potent inhibitory effects on B cell activation, and can protect against organ dysfunction.


Assuntos
Formação de Anticorpos/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Rejeição de Enxerto/prevenção & controle , Ativação Linfocitária/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cricetinae , Feminino , Rejeição de Enxerto/imunologia , Xenoenxertos/efeitos dos fármacos , Xenoenxertos/imunologia , Humanos , Leucócitos Mononucleares , Masculino , Mesocricetus , Modelos Animais , Transplante de Órgãos/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Ratos , Ratos Endogâmicos Lew , Transplante Heterólogo/efeitos adversos
5.
Anal Bioanal Chem ; 405(21): 6621-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23836082

RESUMO

A novel application of time-of-flight secondary ion mass spectrometry (ToF-SIMS) with continuous Ar cluster beams to peptide analysis was investigated. In order to evaluate peptide structures, it is necessary to detect fragment ions related to multiple neighbouring amino acid residues. It is, however, difficult to detect these using conventional ToF-SIMS primary ion beams such as Bi cluster beams. Recently, C60 and Ar cluster ion beams have been introduced to ToF-SIMS as primary ion beams and are expected to generate larger secondary ions than conventional ones. In this study, two sets of model peptides have been studied: (des-Tyr)-Leu-enkephalin and (des-Tyr)-Met-enkephalin (molecular weights are approximately 400 Da), and [Asn(1) Val(5)]-angiotensin II and [Val(5)]-angiotensin I (molecular weights are approximately 1,000 Da) in order to evaluate the usefulness of the large cluster ion beams for peptide structural analysis. As a result, by using the Ar cluster beams, peptide molecular ions and large fragment ions, which are not easily detected using conventional ToF-SIMS primary ion beams such as Bi3 (+), are clearly detected. Since the large fragment ions indicating amino acid sequences of the peptides are detected by the large cluster beams, it is suggested that the Ar cluster and C60 ion beams are useful for peptide structural analysis.


Assuntos
Aminoácidos/análise , Aminoácidos/química , Argônio/química , Fulerenos/química , Peptídeos/análise , Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Sequência de Aminoácidos , Aminoácidos/efeitos da radiação , Íons Pesados , Dados de Sequência Molecular , Peptídeos/efeitos da radiação
6.
Mol Carcinog ; 46(2): 155-64, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17186543

RESUMO

Activation of tyrosine kinases is an important factor during cancer development. Axl, one of the receptor tyrosine kinases, binds to the specific ligand growth arrest-specific gene 6 (Gas6), which encodes a vitamin K-dependent gamma-carboxyglutamyl protein. Although many receptor tyrosine kinases and their ligands are involved in gastric carcinogenesis, whether Gas6-Axl signaling is involved in gastric carcinogenesis has not been elucidated. The aim of this study was to investigate the expression of Gas6 and Axl in gastric cancer and also their roles during gastric carcinogenesis. mRNA and protein of Gas6 and Axl were highly expressed in a substantial proportion of human gastric cancer tissue and cell lines, and Gas6 expression was significantly associated with lymph node metastasis. With recombinant Gas6 and a decoy-receptor of Axl in vitro, we demonstrated that Gas6-Axl signaling pathway enhanced cellular survival and invasion and suppressed apoptosis via Akt pathway. Our results suggests that Gas6-Axl signaling plays a role during gastric carcinogenesis, and that targeting Gas6-Axl signaling could be a novel therapeutic for gastric cancer.


Assuntos
Sobrevivência Celular , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases/genética , Neoplasias Gástricas/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoprecipitação , Fosforilação , Proteínas Proto-Oncogênicas , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Vitamina K/farmacologia , Receptor Tirosina Quinase Axl
7.
Oncogene ; 23(28): 4921-9, 2004 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-15077160

RESUMO

Signal transduction and activator of transcription 3(STAT3) signaling is constitutively activated in various tumors, and is involved in cell survival and proliferation during oncogenesis. There are few reports, however, on the role of STAT3 signaling in gastric cancer. The aim of the present study was to clarify the role of STAT3 signaling in apoptosis and cellular proliferation in gastric cancer. Here we reported that STAT3 was constitutively activated in various human gastric cancer cells and its inhibition by ectopic dominant-negative STAT3 or Janus kinase inhibitor, tyrphostin AG490, induced apoptosis. Furthermore, STAT3 inhibition markedly decreased survivin expression, and forced expression of survivin rescued AGS cells from apoptosis induced by STAT3 inhibition. Although some reports demonstrated that the PI3K/Akt pathway regulates survivin expression, inhibition of the PI3K/Akt pathway did not affect survivin expression in AGS and MKN1 cells. Finally, activated form of STAT3, Tyr-705 phospho-stat3, was found in the nucleus of cancer cells in 11 of 40 (27.5%) human gastric cancer specimens. These findings suggest that constitutively activated STAT3 signaling supports gastric cancer cell survival in association with survivin expression.2004


Assuntos
Sobrevivência Celular/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas Associadas aos Microtúbulos/genética , Transativadores/genética , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Divisão Celular , Linhagem Celular Tumoral , Núcleo Celular/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Proteínas Inibidoras de Apoptose , Cinética , Proteínas de Neoplasias , Fator de Transcrição STAT3 , Transdução de Sinais , Neoplasias Gástricas , Survivina , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA