Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559056

RESUMO

Background: Biological sex is an important risk factor for glioblastoma (GBM), with males having a higher incidence and poorer prognosis. The mechanisms for this sex bias are thought to be both tumor intrinsic and tumor extrinsic. MicroRNAs (miRNAs), key post-transcriptional regulators of gene expression, have been previously linked to sex differences in various cell types and diseases, but their role in the sex bias of GBM remains unknown. Methods: We leveraged previously published paired miRNA and mRNA sequencing of 39 GBM patients (22 male, 17 female) to identify sex-biased miRNAs. We further interrogated a separate single-cell RNA sequencing dataset of 110 GBM patients to examine whether differences in miRNA target gene expression were tumor cell intrinsic or tumor cell extrinsic. Results were validated in a panel of patient-derived cell models. Results: We identified 10 sex-biased miRNAs (adjusted < 0.1), of which 3 were more highly expressed in males and 7 more highly expressed in females. Of these, miR-644a was higher in females, and increased expression of miR-644a target genes was significantly associated with decreased overall survival (HR 1.3, p = 0.02). Furthermore, analysis of an independent single-cell RNA sequencing dataset confirmed sex-specific expression of miR-644a target genes in tumor cells (p < 10-15). Among patient derived models, miR-644a was expressed a median of 4.8-fold higher in females compared to males. Conclusions: Our findings implicate miR-644a as a candidate tumor cell-intrinsic regulator of sex-biased gene expression in GBM.

2.
Res Sq ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585839

RESUMO

Many cancers, including glioblastoma (GBM), have a male-biased sex difference in incidence and outcome. The underlying reasons for this sex bias are unclear but likely involve differences in tumor cell state and immune response. This effect is further amplified by sex hormones, including androgens, which have been shown to inhibit anti-tumor T cell immunity. Here, we show that androgens drive anti-tumor immunity in brain tumors, in contrast to its effect in other tumor types. Upon castration, tumor growth was accelerated with attenuated T cell function in GBM and brain tumor models, but the opposite was observed when tumors were located outside the brain. Activity of the hypothalamus-pituitary-adrenal gland (HPA) axis was increased in castrated mice, particularly in those with brain tumors. Blockade of glucocorticoid receptors reversed the accelerated tumor growth in castrated mice, indicating that the effect of castration was mediated by elevated glucocorticoid signaling. Furthermore, this mechanism was not GBM specific, but brain specific, as hyperactivation of the HPA axis was observed with intracranial implantation of non-GBM tumors in the brain. Together, our findings establish that brain tumors drive distinct endocrine-mediated mechanisms in the androgen-deprived setting and highlight the importance of organ-specific effects on anti-tumor immunity.

3.
J Wound Care ; 33(Sup3): S44-S50, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457299

RESUMO

OBJECTIVE: Hard-to-heal (chronic) wounds negatively impact patients and are a source of significant strain on the healthcare system and economy. These wounds are often resistant to standard of care (SoC) wound healing approaches due to a diversity of underlying pathologies. Cellular, acellular, and matrix-like products, such as amniotic membranes (AM), are a potential solution to these challenges. A growing body of evidence suggests that AM may be useful for treatment-resistant wounds; however, limited information is available regarding the efficacy of dehydrated amniotic membrane (DHAM) on multi-aetiology, hard-to-heal wounds. Therefore, we analysed the efficacy of DHAM treatment in reducing the size of hard-to-heal diabetic and venous leg ulcers (VLUs) that had failed to improve after SoC-based treatments. METHOD: In this multicentre retrospective study, we analysed wound size during clinic visits for patients being treated for either diabetic or VLUs. During each visit, the treatment consisted of debridement followed by application of DHAM. Each wound was measured after debridement and prior to DHAM application, and wound volumes over time or number of DHAM applications were compared. RESULTS: A total of 18 wounds in 11 patients were analysed as part of this study. Wounds showed a significant reduction in volume after a single DHAM application, and a 50% reduction in wound size was observed after approximately two DHAM applications. These findings are consistent with reports investigating DHAM treatment of diabetic ulcers that were not necessarily resistant to treatment. CONCLUSION: To our knowledge, this study is the first to directly compare the efficacy of standalone DHAM application to hard-to-heal diabetic and venous leg ulcers, and our findings indicate that DHAM is an effective intervention for resolving these types of wounds. This suggests that implementing this approach could lead to fewer clinic visits, cost savings and improved patient quality of life. DECLARATION OF INTEREST: This research was supported in part by Merakris Therapeutics, US, and facilitated access to deidentified patient datasets, which may represent a perceived conflict of interest; however, the primary data analysis was performed by FSB who is unaffiliated with Merakris Therapeutics. TCB is a founder, employee of and shareholder in Merakris Therapeutics; WSF is a co-founder of, consultant for, and shareholder in Merakris Therapeutics, and was also supported by the National Institutes of Health National Center for Advancing Translational Sciences Clinical and Translational Science Awards Grant KL2 Scholars Program (KL2TR001441). The research was also supported through endowments to WSF from the University of Texas Medical Branch Mimmie and Hallie Smith Endowed Chair of Transplant Research and the John L Hern University Chair in Transplant Surgery.


Assuntos
Pé Diabético , Úlcera Varicosa , Humanos , Estudos Retrospectivos , Âmnio , Qualidade de Vida , Cicatrização , Úlcera Varicosa/terapia , Pé Diabético/tratamento farmacológico
4.
Neurooncol Adv ; 6(1): vdad154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38239626

RESUMO

Background: Glioblastoma (GBM) displays alterations in iron that drive proliferation and tumor growth. Iron regulation is complex and involves many regulatory mechanisms, including the homeostatic iron regulator (HFE) gene, which encodes the homeostatic iron regulatory protein. While HFE is upregulated in GBM and correlates with poor survival outcomes, the function of HFE in GBM remains unclear. Methods: We interrogated the impact of cell-intrinsic Hfe expression on proliferation and survival of intracranially implanted animals through genetic gain- and loss-of-function approaches in syngeneic mouse glioma models, along with in vivo immune assessments. We also determined the expression of iron-associated genes and their relationship to survival in GBM using public data sets and used transcriptional profiling to identify differentially expressed pathways in control compared to Hfe-knockdown cells. Results: Overexpression of Hfe accelerated GBM proliferation and reduced animal survival, whereas suppression of Hfe induced apoptotic cell death and extended survival, which was more pronounced in females and associated with attenuation of natural killer cells and CD8+ T cell activity. Analysis of iron gene signatures in Hfe-knockdown cells revealed alterations in the expression of several iron-associated genes, suggesting global disruption of intracellular iron homeostasis. Further analysis of differentially expressed pathways revealed oxidative stress as the top pathway upregulated following Hfe loss. Hfe knockdown indeed resulted in enhanced 55Fe uptake and generation of reactive oxygen species. Conclusions: These findings reveal an essential function for HFE in GBM cell growth and survival, as well as a sex-specific interaction with the immune response.

5.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014234

RESUMO

The glioblastoma microenvironment is enriched in immunosuppressive factors that potently interfere with the function of cytotoxic T lymphocytes. Cancer cells can directly impact the immune system, but the mechanisms driving these interactions are not completely clear. Here we demonstrate that the polyamine metabolite spermidine is elevated in the glioblastoma tumor microenvironment. Exogenous administration of spermidine drives tumor aggressiveness in an immune-dependent manner in pre-clinical mouse models via reduction of CD8+ T cell frequency and phenotype. Knockdown of ornithine decarboxylase, the rate-limiting enzyme in spermidine synthesis, did not impact cancer cell growth in vitro but did result in extended survival. Furthermore, glioblastoma patients with a more favorable outcome had a significant reduction in spermidine compared to patients with a poor prognosis. Our results demonstrate that spermidine functions as a cancer cell-derived metabolite that drives tumor progression by reducing CD8+T cell number and function.

6.
Cancer Immunol Res ; 11(10): 1300-1301, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37702792

RESUMO

Enhancing T-cell infiltration into glioblastoma (GBM) tumors has proven challenging yet remains crucial for improving the efficacy of immunotherapy for patients with this deadly cancer. In this issue, Qin, Huang, Li, and colleagues find that inhibiting vasculature formation driven by cancer stem cells is a promising target to enhance immunotherapy in GBM. See related article by Qin, Huang, Li, et al., p. 1351 (2).


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/terapia , Glioblastoma/patologia , Linfócitos T/patologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Imunoterapia , Células-Tronco Neoplásicas/patologia
7.
Cancer Discov ; 13(9): 2090-2105, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37378557

RESUMO

Sex differences in glioblastoma (GBM) incidence and outcome are well recognized, and emerging evidence suggests that these extend to genetic/epigenetic and cellular differences, including immune responses. However, the mechanisms driving immunologic sex differences are not fully understood. Here, we demonstrate that T cells play a critical role in driving GBM sex differences. Male mice exhibited accelerated tumor growth, with decreased frequency and increased exhaustion of CD8+ T cells in the tumor. Furthermore, a higher frequency of progenitor exhausted T cells was found in males, with improved responsiveness to anti-PD-1 treatment. Moreover, increased T-cell exhaustion was observed in male GBM patients. Bone marrow chimera and adoptive transfer models indicated that T cell-mediated tumor control was predominantly regulated in a cell-intrinsic manner, partially mediated by the X chromosome inactivation escape gene Kdm6a. These findings demonstrate that sex-biased predetermined behavior of T cells is critical for inducing sex differences in GBM progression and immunotherapy response. SIGNIFICANCE: Immunotherapies in patients with GBM have been unsuccessful due to a variety of factors, including the highly immunosuppressive tumor microenvironment in GBM. This study demonstrates that sex-biased T-cell behaviors are predominantly intrinsically regulated, further suggesting sex-specific approaches can be leveraged to potentially improve the therapeutic efficacy of immunotherapy in GBM. See related commentary by Alspach, p. 1966. This article is featured in Selected Articles from This Issue, p. 1949.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Masculino , Feminino , Camundongos , Animais , Glioblastoma/genética , Exaustão das Células T , Linfócitos T CD8-Positivos , Imunoterapia , Imunidade , Neoplasias Encefálicas/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA