Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(51): e2310944120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38085782

RESUMO

Mitochondrial apoptotic signaling cascades lead to the formation of the apoptosome, a 1.1-MDa heptameric protein scaffold that recruits and activates the caspase-9 protease. Once activated, caspase-9 cleaves and activates downstream effector caspases, triggering the onset of cell death through caspase-mediated proteolysis of cellular proteins. Failure to activate caspase-9 enables the evasion of programmed cell death, which occurs in various forms of cancer. Despite the critical apoptotic function of caspase-9, the structural mechanism by which it is activated on the apoptosome has remained elusive. Here, we used a combination of methyl-transverse relaxation-optimized NMR spectroscopy, protein engineering, and biochemical assays to study the activation of caspase-9 bound to the apoptosome. In the absence of peptide substrate, we observed that both caspase-9 and its isolated protease domain (PD) only very weakly dimerize with dissociation constants in the millimolar range. Methyl-NMR spectra of isotope-labeled caspase-9, within the 1.3-MDa native apoptosome complex or an engineered 480-kDa apoptosome mimic, reveal that the caspase-9 PD remains monomeric after recruitment to the scaffold. Binding to the apoptosome, therefore, organizes caspase-9 PDs so that they can rapidly and extensively dimerize only when substrate is present, providing an important layer in the regulation of caspase-9 activation. Our work highlights the unique role of NMR spectroscopy to structurally characterize protein domains that are flexibly tethered to large scaffolds, even in cases where the molecular targets are in excess of 1 MDa, as in the present example.


Assuntos
Apoptossomas , Caspases , Caspase 9/metabolismo , Apoptossomas/química , Caspases/metabolismo , Apoptose , Espectroscopia de Ressonância Magnética , Caspase 3/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(18): e2303149120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094170

RESUMO

With the recent success in calculating protein structures from amino acid sequences using artificial intelligence-based algorithms, an important next step is to decipher how dynamics is encoded by the primary protein sequence so as to better predict function. Such dynamics information is critical for protein design, where strategies could then focus not only on sequences that fold into particular structures that perform a given task, but would also include low-lying excited protein states that could influence the function of the designed protein. Herein, we illustrate the importance of dynamics in modulating the function of C34, a designed α/ß protein that captures ß-strands of target ligands and is a member of a family of proteins designed to sequester ß-strands and ß hairpins of aggregation-prone molecules that lead to a variety of pathologies. Using a strategy to "see" regions of apo C34 that are invisible to NMR spectroscopy as a result of pervasive conformational exchange, as well as a mutagenesis approach whereby C34 molecules are stabilized into a single conformer, we determine the structures of the predominant conformations that are sampled by C34 and show that these attenuate the affinity for cognate peptide. Subsequently, the observed motion is exploited to develop an allosterically regulated peptide binder whose binding affinity can be controlled through the addition of a second molecule. Our study emphasizes the unique role that NMR can play in directing the design process and in the construction of new molecules with more complex functionality.


Assuntos
Inteligência Artificial , Proteínas , Conformação Proteica , Sequência de Aminoácidos , Peptídeos , Ligantes
3.
Nat Commun ; 14(1): 2150, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076542

RESUMO

Accumulation of α-synuclein into toxic oligomers or fibrils is implicated in dopaminergic neurodegeneration in Parkinson's disease. Here we performed a high-throughput, proteome-wide peptide screen to identify protein-protein interaction inhibitors that reduce α-synuclein oligomer levels and their associated cytotoxicity. We find that the most potent peptide inhibitor disrupts the direct interaction between the C-terminal region of α-synuclein and CHarged Multivesicular body Protein 2B (CHMP2B), a component of the Endosomal Sorting Complex Required for Transport-III (ESCRT-III). We show that α-synuclein impedes endolysosomal activity via this interaction, thereby inhibiting its own degradation. Conversely, the peptide inhibitor restores endolysosomal function and thereby decreases α-synuclein levels in multiple models, including female and male human cells harboring disease-causing α-synuclein mutations. Furthermore, the peptide inhibitor protects dopaminergic neurons from α-synuclein-mediated degeneration in hermaphroditic C. elegans and preclinical Parkinson's disease models using female rats. Thus, the α-synuclein-CHMP2B interaction is a potential therapeutic target for neurodegenerative disorders.


Assuntos
Doença de Parkinson , Masculino , Feminino , Animais , Ratos , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Caenorhabditis elegans/metabolismo , Neurônios Dopaminérgicos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo
4.
J Biol Chem ; 299(1): 102776, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496075

RESUMO

Biomolecular condensates concentrate proteins, nucleic acids, and small molecules and play an essential role in many biological processes. Their formation is tuned by a balance between energetically favorable and unfavorable contacts, with charge-charge interactions playing a central role in some systems. The positively charged intrinsically disordered carboxy-terminal region of the RNA-binding protein CAPRIN1 is one such example, phase separating upon addition of negatively charged ATP or high concentrations of sodium chloride (NaCl). Using solution NMR spectroscopy, we measured residue-specific near-surface electrostatic potentials (ϕENS) of CAPRIN1 along its NaCl-induced phase separation trajectory to compare with those obtained using ATP. In both cases, electrostatic shielding decreases ϕENS values, yet surface potentials of CAPRIN1 in the two condensates can be different, depending on the amount of NaCl or ATP added. Our results establish that even small differences in ϕENS can significantly affect the level of protein enrichment and the mechanical properties of the condensed phase, leading, potentially, to the regulation of biological processes.


Assuntos
Hidrodinâmica , Proteínas Intrinsicamente Desordenadas , Proteínas de Ligação a RNA , Trifosfato de Adenosina , Proteínas Intrinsicamente Desordenadas/química , Proteínas de Ligação a RNA/química , Cloreto de Sódio/metabolismo , Eletricidade Estática
5.
Proc Natl Acad Sci U S A ; 119(36): e2210492119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36040869

RESUMO

Electrostatic interactions and charge balance are important for the formation of biomolecular condensates involving proteins and nucleic acids. However, a detailed, atomistic picture of the charge distribution around proteins during the phase-separation process is lacking. Here, we use solution NMR spectroscopy to measure residue-specific near-surface electrostatic potentials (ϕENS) of the positively charged carboxyl-terminal intrinsically disordered 103 residues of CAPRIN1, an RNA-binding protein localized to membraneless organelles playing an important role in messenger RNA (mRNA) storage and translation. Measured ϕENS values have been mapped along the adenosine triphosphate (ATP)-induced phase-separation trajectory. In the absence of ATP, ϕENS values for the mixed state of CAPRIN1 are positive and large and progressively decrease as ATP is added. This is coupled to increasing interchain interactions, particularly between aromatic-rich and arginine-rich regions of the protein. Upon phase separation, CAPRIN1 molecules in the condensed phase are neutral (ϕENS [Formula: see text] 0 mV), with ∼five molecules of ATP associated with each CAPRIN1 chain. Increasing the ATP concentration further inverts the CAPRIN1 electrostatic potential, so that molecules become negatively charged, especially in aromatic-rich regions, leading to re-entrance into a mixed phase. Our results collectively show that a subtle balance between electrostatic repulsion and interchain attractive interactions regulates CAPRIN1 phase separation and provides insight into how nucleotides, such as ATP, can induce formation of and subsequently dissolve protein condensates.


Assuntos
Fenômenos Bioquímicos , Proteínas Intrinsicamente Desordenadas , Transição de Fase , Proteínas de Ligação a RNA , Eletricidade Estática , Trifosfato de Adenosina/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Propriedades de Superfície
6.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34446566

RESUMO

The human high-temperature requirement A2 (HtrA2) mitochondrial protease is critical for cellular proteostasis, with mutations in this enzyme closely associated with the onset of neurodegenerative disorders. HtrA2 forms a homotrimeric structure, with each subunit composed of protease and PDZ (PSD-95, DLG, ZO-1) domains. Although we had previously shown that successive ligand binding occurs with increasing affinity, and it has been suggested that allostery plays a role in regulating catalysis, the molecular details of how this occurs have not been established. Here, we use cysteine-based chemistry to generate subunits in different conformational states along with a protomer mixing strategy, biochemical assays, and methyl-transverse relaxation optimized spectroscopy-based NMR studies to understand the role of interprotomer allostery in regulating HtrA2 function. We show that substrate binding to a PDZ domain of one protomer increases millisecond-to-microsecond timescale dynamics in neighboring subunits that prime them for binding substrate molecules. Only when all three PDZ-binding sites are substrate bound can the enzyme transition into an active conformation that involves significant structural rearrangements of the protease domains. Our results thus explain why when one (or more) of the protomers is fixed in a ligand-binding-incompetent conformation or contains the inactivating S276C mutation that is causative for a neurodegenerative phenotype in mouse models of Parkinson's disease, transition to an active state cannot be formed. In this manner, wild-type HtrA2 is only active when substrate concentrations are high and therefore toxic and unregulated proteolysis of nonsubstrate proteins can be suppressed.


Assuntos
Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Mitocôndrias/metabolismo , Mutação , Domínios PDZ , Doença de Parkinson/patologia , Regiões Promotoras Genéticas , Animais , Domínio Catalítico , Serina Peptidase 2 de Requerimento de Alta Temperatura A/química , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Humanos , Camundongos , Mitocôndrias/genética , Modelos Moleculares , Doença de Parkinson/etiologia , Conformação Proteica , Proteólise , Relação Estrutura-Atividade
7.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074792

RESUMO

The role of biomolecular condensates in regulating biological function and the importance of dynamic interactions involving intrinsically disordered protein regions (IDRs) in their assembly are increasingly appreciated. While computational and theoretical approaches have provided significant insights into IDR phase behavior, establishing the critical interactions that govern condensation with atomic resolution through experiment is more difficult, given the lack of applicability of standard structural biological tools to study these highly dynamic large-scale associated states. NMR can be a valuable method, but the dynamic and viscous nature of condensed IDRs presents challenges. Using the C-terminal IDR (607 to 709) of CAPRIN1, an RNA-binding protein found in stress granules, P bodies, and messenger RNA transport granules, we have developed and applied a variety of NMR methods for studies of condensed IDR states to provide insights into interactions driving and modulating phase separation. We identify ATP interactions with CAPRIN1 that can enhance or reduce phase separation. We also quantify specific side-chain and backbone interactions within condensed CAPRIN1 that define critical sequences for phase separation and that are reduced by O-GlcNAcylation known to occur during cell cycle and stress. This expanded NMR toolkit that has been developed for characterizing IDR condensates has generated detailed interaction information relevant for understanding CAPRIN1 biology and informing general models of phase separation, with significant potential future applications to illuminate dynamic structure-function relationships in other biological condensates.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Ciclo Celular/química , Simulação de Dinâmica Molecular , Humanos , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos
8.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33692127

RESUMO

Human High temperature requirement A2 (HtrA2) is a mitochondrial protease chaperone that plays an important role in cellular proteostasis and in regulating cell-signaling events, with aberrant HtrA2 function leading to neurodegeneration and parkinsonian phenotypes. Structural studies of the enzyme have established a trimeric architecture, comprising three identical protomers in which the active sites of each protease domain are sequestered to form a catalytically inactive complex. The mechanism by which enzyme function is regulated is not well understood. Using methyl transverse relaxation optimized spectroscopy (TROSY)-based solution NMR in concert with biochemical assays, a functional HtrA2 oligomerization/binding cycle has been established. In the absence of substrates, HtrA2 exchanges between a heretofore unobserved hexameric conformation and the canonical trimeric structure, with the hexamer showing much weaker affinity toward substrates. Both structures are substrate inaccessible, explaining their low basal activity in the absence of the binding of activator peptide. The binding of the activator peptide to each of the protomers of the trimer occurs with positive cooperativity and induces intrasubunit domain reorientations to expose the catalytic center, leading to increased proteolytic activity. Our data paint a picture of HtrA2 as a finely tuned, stress-protective enzyme whose activity can be modulated both by oligomerization and domain reorientation, with basal levels of catalysis kept low to avoid proteolysis of nontarget proteins.


Assuntos
Serina Peptidase 2 de Requerimento de Alta Temperatura A/química , Proteínas Mitocondriais/química , Sítios de Ligação , Domínio Catalítico , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Proteínas Mitocondriais/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteólise , Relação Estrutura-Atividade , Termodinâmica
9.
J Am Chem Soc ; 142(49): 20519-20523, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33232135

RESUMO

ClpPs are a conserved family of serine proteases that collaborate with ATP-dependent translocases to degrade protein substrates. Drugs targeting these enzymes have attracted interest for the treatment of cancer and bacterial infections due to their critical role in mitochondrial and bacterial proteostasis, respectively. As such, there is significant interest in understanding structure-function relationships in this protein family. ClpPs are known to crystallize in extended, compact, and compressed forms; however, it is unclear what conditions favor the formation of each form and whether they are populated by wild-type enzymes in solution. Here, we use cryo-EM and solution NMR spectroscopy to demonstrate that a pH-dependent conformational switch controls an equilibrium between the active extended and inactive compressed forms of ClpP from the Gram-negative pathogen Neisseria meningitidis. Our findings provide insight into how ClpPs exploit their rugged energy landscapes to enable key conformational changes that regulate their function.


Assuntos
Proteínas de Bactérias/química , Endopeptidase Clp/química , Neisseria meningitidis/enzimologia , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Endopeptidase Clp/metabolismo , Concentração de Íons de Hidrogênio , Conformação Proteica , Termodinâmica
10.
Proc Natl Acad Sci U S A ; 117(42): 26226-26236, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33028677

RESUMO

VCP/p97, an enzyme critical to proteostasis, is regulated through interactions with protein adaptors targeting it to specific cellular tasks. One such adaptor, p47, forms a complex with p97 to direct lipid membrane remodeling. Here, we use NMR and other biophysical methods to study the structural dynamics of p47 and p47-p97 complexes. Disordered regions in p47 are shown to be critical in directing intra-p47 and p47-p97 interactions via a pair of previously unidentified linear motifs. One of these, an SHP domain, regulates p47 binding to p97 in a manner that depends on the nucleotide state of p97. NMR and electron cryomicroscopy data have been used as restraints in molecular dynamics trajectories to develop structural ensembles for p47-p97 complexes in adenosine diphosphate (ADP)- and adenosine triphosphate (ATP)-bound conformations, highlighting differences in interactions in the two states. Our study establishes the importance of intrinsically disordered regions in p47 for the formation of functional p47-p97 complexes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Adenosina Trifosfatases/química , Motivos de Aminoácidos , Humanos , Proteínas Intrinsicamente Desordenadas/química , Modelos Moleculares , Proteínas Nucleares/química , Ligação Proteica , Conformação Proteica
11.
J Biomol NMR ; 74(12): 681-693, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32997264

RESUMO

Many proteins interact with their ligand proteins by recognition of short linear motifs that are often intrinsically disordered. These interactions are usually weak and are characterized by fast exchange. NMR spectroscopy is a powerful tool to study weak interactions. The methods that have been commonly used are analysis of chemicals shift perturbations (CSP) upon ligand binding and saturation transfer difference spectroscopy. These two methods identify residues at the binding interface between the protein and its ligand. In the present study, we used a combination of transferred-NOE, specific methyl-labeling and an optimized isotope-edited/isotope-filtered NOESY experiment to study specific interactions between the 42 kDa p38α mitogen-activated protein kinase and the kinase interaction motif (KIM) on the STEP phosphatase. These measurements distinguished between residues that both exhibit CSPs upon ligand binding and interact with the KIM peptide from residues that exhibit CSPs but do not interact with the peptide. In addition, these results provide information about pairwise interactions that is important for a more reliable docking of the KIM peptide into its interacting surface on p38α. This combination of techniques should be applicable for many protein-peptide complexes up to 80 kDa for which methyl resonance assignment can be achieved.


Assuntos
Isótopos de Carbono/química , Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Proteínas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Simulação por Computador , Humanos , Cinética , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Quinases p38 Ativadas por Mitógeno/química , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Angew Chem Int Ed Engl ; 59(50): 22423-22426, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32857889

RESUMO

The hexameric p97 enzyme plays an integral role in cellular homeostasis. Large changes to the orientation of its N-terminal domains (NTDs), corresponding to NTD-down (p97-ADP) or NTD-up (p97-ATP), accompany ATP hydrolysis. The NTDs in a series of p97 disease mutants interconvert rapidly between up and down conformations when p97 is in the ADP-bound state. While the populations of up and down NTDs can be determined from bulk measurements, information about the cooperativity of the transition between conformations is lacking. Here we use cryo-EM to determine populations of the 14 unique up/down NTD states of the homo-hexameric R95G disease-causing p97 ring, showing that NTD orientations do not depend on those of neighboring subunits. In contrast, NMR studies establish that inter-protomer cooperativity is important for regulating the orientation of NTDs in p97 particles comprising mixtures of different subunits, such as wild-type and R95G, emphasizing the synergy between cryo-EM and NMR in establishing how the components of p97 function.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatases/química , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Homeostase , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Proteínas Nucleares/química
13.
Bioorg Med Chem Lett ; 30(16): 127356, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32631553

RESUMO

Misfolding and aggregation of immunoglobulin light chains (LCs) leads to the degeneration of post-mitotic tissue in the disease immunoglobulin LC amyloidosis (AL). We previously reported the discovery of small molecule kinetic stabilizers of the native dimeric structure of full-length LCs, which slow or stop the LC aggregation cascade at the outset. A predominant structural category of kinetic stabilizers emerging from the high-throughput screen are coumarins substituted at the 7-position, which bind at the interface between the two variable domains of the light chain dimer. Here, we report the binding mode of another, more polar, LC kinetic stabilizer chemotype, 3,5-substituted hydantoins. Computational docking, solution nuclear magnetic resonance experiments, and x-ray crystallography show that the aromatic substructure emerging from the hydantoin 3-position occupies the same LC binding site as the coumarin ring. Notably, the hydantoin ring extends beyond the binding site mapped out by the coumarin hits. The hydantoin ring makes hydrogen bonds with both LC monomers simultaneously. The alkyl substructure at the hydantoin 5-position partially occupies a novel binding pocket proximal to the pocket occupied by the coumarin substructure. Overall, the hydantoin structural data suggest that a larger area of the LC variable-domain-variable-domain dimer interface is amenable to small molecule binding than previously demonstrated, which should facilitate development of more potent full-length LC kinetic stabilizers.


Assuntos
Hidantoínas/farmacologia , Cadeias Leves de Imunoglobulina/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Hidantoínas/química , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Estrutura Molecular , Estabilidade Proteica/efeitos dos fármacos , Relação Estrutura-Atividade
14.
Elife ; 92020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31916936

RESUMO

The ClpXP degradation machine consists of a hexameric AAA+ unfoldase (ClpX) and a pair of heptameric serine protease rings (ClpP) that unfold, translocate, and subsequently degrade client proteins. ClpXP is an important target for drug development against infectious diseases. Although structures are available for isolated ClpX and ClpP rings, it remains unknown how symmetry mismatched ClpX and ClpP work in tandem for processive substrate translocation into the ClpP proteolytic chamber. Here, we present cryo-EM structures of the substrate-bound ClpXP complex from Neisseria meningitidis at 2.3 to 3.3 Å resolution. The structures allow development of a model in which the sequential hydrolysis of ATP is coupled to motions of ClpX loops that lead to directional substrate translocation and ClpX rotation relative to ClpP. Our data add to the growing body of evidence that AAA+ molecular machines generate translocating forces by a common mechanism.


Assuntos
Endopeptidase Clp/química , Endopeptidase Clp/metabolismo , Neisseria meningitidis/enzimologia , Desdobramento de Proteína , Proteólise , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Proteínas de Fluorescência Verde/metabolismo , Hidrólise , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
15.
J Am Chem Soc ; 141(34): 13562-13571, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31364359

RESUMO

Immunoglobulin light-chain amyloidosis is a protein aggregation disease that leads to proteinaceous deposits in a variety of organs in the body and, if untreated, ultimately results in death. The mechanisms by which light-chain aggregation occurs are not well understood. Here we have used solution NMR spectroscopy and biophysical studies to probe immunoglobulin variable domain λV6-57 VL aggregation, a process that appears to drive the degenerative phenotypes in amyloidosis patients. Our results establish that aggregation proceeds via the unfolded state. We identify, through NMR relaxation experiments recorded on the unfolded domain ensemble, a series of hotspots that could be involved in the initial phases of aggregate formation. Mutational analysis of these hotspots reveals that the region that includes K16-R24 is particularly aggregation prone. Notably, this region includes the site of the R24G substitution, a mutation that is found in variable domains of λ light-chain deposits in 25% of patients. The R24G λV6-57 VL domain aggregates more rapidly than would be expected on the basis of thermodynamic stability alone, while substitutions in many of the aggregation-prone regions significantly slow down fibril formation.


Assuntos
Cadeias Leves de Imunoglobulina/química , Região Variável de Imunoglobulina/química , Agregados Proteicos , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Desdobramento de Proteína , Termodinâmica
16.
Proc Natl Acad Sci U S A ; 116(17): 8360-8369, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30971495

RESUMO

In Ig light-chain (LC) amyloidosis (AL), the unique antibody LC protein that is secreted by monoclonal plasma cells in each patient misfolds and/or aggregates, a process leading to organ degeneration. As a step toward developing treatments for AL patients with substantial cardiac involvement who have difficulty tolerating existing chemotherapy regimens, we introduce small-molecule kinetic stabilizers of the native dimeric structure of full-length LCs, which can slow or stop the amyloidogenicity cascade at its origin. A protease-coupled fluorescence polarization-based high-throughput screen was employed to identify small molecules that kinetically stabilize LCs. NMR and X-ray crystallographic data demonstrate that at least one structural family of hits bind at the LC-LC dimerization interface within full-length LCs, utilizing variable-domain residues that are highly conserved in most AL patients. Stopping the amyloidogenesis cascade at the beginning is a proven strategy to ameliorate postmitotic tissue degeneration.


Assuntos
Amiloide , Cadeias Leves de Imunoglobulina , Estabilidade Proteica , Amiloide/química , Amiloide/metabolismo , Amiloidose , Ensaios de Triagem em Larga Escala , Humanos , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/metabolismo , Cinética , Multimerização Proteica
17.
Proc Natl Acad Sci U S A ; 116(3): 854-863, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30598439

RESUMO

Amyloid light-chain (LC) amyloidosis is a protein misfolding disease in which the aggregation of an overexpressed antibody LC from a clonal plasma cell leads to organ toxicity and patient death if left untreated. While the overall dimeric architecture of LC molecules is established, with each LC composed of variable (VL) and constant (CL) domains, the relative contributions of LC domain-domain interfaces and intrinsic domain stabilities to protection against LC aggregation are not well understood. To address these topics we have engineered a number of domain-destabilized LC mutants and used solution NMR spectroscopy to characterize their structural properties and intrinsic stabilities. Moreover, we used fluorescence spectroscopy to assay their aggregation propensities. Our results point to the importance of both dimerization strength and intrinsic monomer stability in stabilizing VL domains against aggregation. Notably, in all cases considered VL domains aggregate at least 10-fold faster than full-length LCs, establishing the important protective role of CL domains. A strong protective coupling is found between VL-VL and CL-CL dimer interfaces, with destabilization of one interface adversely affecting the stability of the other. Fibril formation is observed when either the VL or CL domain in the full-length protein is severely destabilized (i.e., where domain unfolding free energies are less than 2 kcal/mol). The important role of CL domains in preventing aggregation highlights the potential of the CL-CL interface as a target for the development of drugs to stabilize the dimeric LC structure and hence prevent LC amyloidosis.


Assuntos
Cadeias Leves de Imunoglobulina/metabolismo , Agregação Patológica de Proteínas , Dimerização , Escherichia coli , Humanos , Domínios Proteicos
18.
Proc Natl Acad Sci U S A ; 115(28): E6447-E6456, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29941580

RESUMO

Protein homeostasis is critically important for cell viability. Key to this process is the refolding of misfolded or aggregated proteins by molecular chaperones or, alternatively, their degradation by proteases. In most prokaryotes and in chloroplasts and mitochondria, protein degradation is performed by the caseinolytic protease ClpP, a tetradecamer barrel-like proteolytic complex. Dysregulating ClpP function has shown promise in fighting antibiotic resistance and as a potential therapy for acute myeloid leukemia. Here we use methyl-transverse relaxation-optimized spectroscopy (TROSY)-based NMR, cryo-EM, biochemical assays, and molecular dynamics simulations to characterize the structural dynamics of ClpP from Staphylococcus aureus (SaClpP) in wild-type and mutant forms in an effort to discover conformational hotspots that regulate its function. Wild-type SaClpP was found exclusively in the active extended form, with the N-terminal domains of its component protomers in predominantly ß-hairpin conformations that are less well-defined than other regions of the protein. A hydrophobic site was identified that, upon mutation, leads to unfolding of the N-terminal domains, loss of SaClpP activity, and formation of a previously unobserved split-ring conformation with a pair of 20-Å-wide pores in the side of the complex. The extended form of the structure and partial activity can be restored via binding of ADEP small-molecule activators. The observed structural plasticity of the N-terminal gates is shown to be a conserved feature through studies of Escherichia coli and Neisseria meningitidis ClpP, suggesting a potential avenue for the development of molecules to allosterically modulate the function of ClpP.


Assuntos
Proteínas de Bactérias/química , Endopeptidase Clp/química , Simulação de Dinâmica Molecular , Staphylococcus aureus/enzimologia , Interações Hidrofóbicas e Hidrofílicas , Domínios Proteicos
19.
Proc Natl Acad Sci U S A ; 115(21): E4786-E4795, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735657

RESUMO

Protein remodeling by AAA+ enzymes is central for maintaining proteostasis in a living cell. However, a detailed structural description of how this is accomplished at the level of the substrate molecules that are acted upon is lacking. Here, we combine chemical cross-linking and methyl transverse relaxation-optimized NMR spectroscopy to study, at atomic resolution, the stepwise unfolding and subsequent refolding of the two-domain substrate calmodulin by the VAT AAA+ unfoldase from Thermoplasma acidophilum By engineering intermolecular disulphide bridges between the substrate and VAT we trap the substrate at different stages of translocation, allowing structural studies throughout the translocation process. Our results show that VAT initiates substrate translocation by pulling on intrinsically unstructured N or C termini of substrate molecules without showing specificity for a particular amino acid sequence. Although the B1 domain of protein G is shown to unfold cooperatively, translocation of calmodulin leads to the formation of intermediates, and these differ on an individual domain level in a manner that depends on whether pulling is from the N or C terminus. The approach presented generates an atomic resolution picture of substrate unfolding and subsequent refolding by unfoldases that can be quite different from results obtained via in vitro denaturation experiments.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Calmodulina/metabolismo , Dobramento de Proteína , Desdobramento de Proteína , Thermoplasma/enzimologia , Proteína com Valosina/química , Proteína com Valosina/metabolismo , Trifosfato de Adenosina/metabolismo , Modelos Moleculares , Conformação Proteica
20.
Proc Natl Acad Sci U S A ; 114(39): E8194-E8203, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28894006

RESUMO

Membrane encapsulation is frequently used by the cell to sequester biomolecules and compartmentalize their function. Cells also concentrate molecules into phase-separated protein or protein/nucleic acid "membraneless organelles" that regulate a host of biochemical processes. Here, we use solution NMR spectroscopy to study phase-separated droplets formed from the intrinsically disordered N-terminal 236 residues of the germ-granule protein Ddx4. We show that the protein within the concentrated phase of phase-separated Ddx4, [Formula: see text], diffuses as a particle of 600-nm hydrodynamic radius dissolved in water. However, NMR spectra reveal sharp resonances with chemical shifts showing [Formula: see text] to be intrinsically disordered. Spin relaxation measurements indicate that the backbone amides of [Formula: see text] have significant mobility, explaining why high-resolution spectra are observed, but motion is reduced compared with an equivalently concentrated nonphase-separating control. Observation of a network of interchain interactions, as established by NOE spectroscopy, shows the importance of Phe and Arg interactions in driving the phase separation of Ddx4, while the salt dependence of both low- and high-concentration regions of phase diagrams establishes an important role for electrostatic interactions. The diffusion of a series of small probes and the compact but disordered 4E binding protein 2 (4E-BP2) protein in [Formula: see text] are explained by an excluded volume effect, similar to that found for globular protein solvents. No changes in structural propensities of 4E-BP2 dissolved in [Formula: see text] are observed, while changes to DNA and RNA molecules have been reported, highlighting the diverse roles that proteinaceous solvents play in dictating the properties of dissolved solutes.


Assuntos
RNA Helicases DEAD-box/química , Hidrodinâmica , Proteínas Intrinsicamente Desordenadas/química , Organelas/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/química , Células Germinativas/metabolismo , Células HeLa , Humanos , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA