Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(22): eadj1431, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809979

RESUMO

Infusion of 13C-labeled metabolites provides a gold standard for understanding the metabolic processes used by T cells during immune responses in vivo. Through infusion of 13C-labeled metabolites (glucose, glutamine, and acetate) in Listeria monocytogenes-infected mice, we demonstrate that CD8 T effector (Teff) cells use metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily toward nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support adenosine triphosphate and de novo pyrimidine synthesis. In addition, early Teff cells rely on glutamic-oxaloacetic transaminase 1 (Got1)-which regulates de novo aspartate synthesis-for effector cell expansion in vivo. CD8 Teff cells change fuel preference over the course of infection, switching from glutamine- to acetate-dependent TCA cycle metabolism late in infection. This study provides insights into the dynamics of Teff metabolism, illuminating distinct pathways of fuel consumption associated with CD8 Teff cell function in vivo.


Assuntos
Acetatos , Linfócitos T CD8-Positivos , Isótopos de Carbono , Glutamina , Glutamina/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Acetatos/metabolismo , Camundongos , Listeriose/metabolismo , Listeriose/imunologia , Listeriose/microbiologia , Listeria monocytogenes , Ciclo do Ácido Cítrico , Glucose/metabolismo , Camundongos Endogâmicos C57BL
2.
Immunity ; 56(9): 2021-2035.e8, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37516105

RESUMO

Environmental nutrient availability influences T cell metabolism, impacting T cell function and shaping immune outcomes. Here, we identified ketone bodies (KBs)-including ß-hydroxybutyrate (ßOHB) and acetoacetate (AcAc)-as essential fuels supporting CD8+ T cell metabolism and effector function. ßOHB directly increased CD8+ T effector (Teff) cell cytokine production and cytolytic activity, and KB oxidation (ketolysis) was required for Teff cell responses to bacterial infection and tumor challenge. CD8+ Teff cells preferentially used KBs over glucose to fuel the tricarboxylic acid (TCA) cycle in vitro and in vivo. KBs directly boosted the respiratory capacity and TCA cycle-dependent metabolic pathways that fuel CD8+ T cell function. Mechanistically, ßOHB was a major substrate for acetyl-CoA production in CD8+ T cells and regulated effector responses through effects on histone acetylation. Together, our results identify cell-intrinsic ketolysis as a metabolic and epigenetic driver of optimal CD8+ T cell effector responses.


Assuntos
Linfócitos T CD8-Positivos , Histonas , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Acetilação , Histonas/metabolismo , Corpos Cetônicos , Animais , Camundongos
3.
Immunity ; 56(5): 1064-1081.e10, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36948193

RESUMO

The recent revolution in tissue-resident macrophage biology has resulted largely from murine studies performed in C57BL/6 mice. Here, using both C57BL/6 and BALB/c mice, we analyze immune cells in the pleural cavity. Unlike C57BL/6 mice, naive tissue-resident large-cavity macrophages (LCMs) of BALB/c mice failed to fully implement the tissue-residency program. Following infection with a pleural-dwelling nematode, these pre-existing differences were accentuated with LCM expansion occurring in C57BL/6, but not in BALB/c mice. While infection drove monocyte recruitment in both strains, only in C57BL/6 mice were monocytes able to efficiently integrate into the resident pool. Monocyte-to-macrophage conversion required both T cells and interleukin-4 receptor alpha (IL-4Rα) signaling. The transition to tissue residency altered macrophage function, and GATA6+ tissue-resident macrophages were required for host resistance to nematode infection. Therefore, during tissue nematode infection, T helper 2 (Th2) cells control the differentiation pathway of resident macrophages, which determines infection outcome.


Assuntos
Filariose , Filarioidea , Infecções por Nematoides , Camundongos , Animais , Filarioidea/fisiologia , Células Th2 , Monócitos , Cavidade Pleural , Camundongos Endogâmicos C57BL , Macrófagos/fisiologia , Diferenciação Celular , Camundongos Endogâmicos BALB C
4.
Front Immunol ; 14: 1291990, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179052

RESUMO

Inflammatory bowel disease (IBD) is an umbrella term for two conditions (Crohn's Disease and Ulcerative Colitis) that is characterized by chronic inflammation of the gastrointestinal tract. The use of pre-clinical animal models has been invaluable for the understanding of potential disease mechanisms. However, despite promising results of numerous therapeutics in mouse colitis models, many of these therapies did not show clinical benefits in patients with IBD. Single cell RNA-sequencing (scRNA-seq) has recently revolutionized our understanding of complex interactions between the immune system, stromal cells, and epithelial cells by mapping novel cell subpopulations and their remodeling during disease. This technology has not been widely applied to pre-clinical models of IBD. ScRNA-seq profiling of murine models may provide an opportunity to increase the translatability into the clinic, and to choose the most appropriate model to test hypotheses and novel therapeutics. In this review, we have summarized some of the key findings at the single cell transcriptomic level in IBD, how specific signatures have been functionally validated in vivo, and highlighted the similarities and differences between scRNA-seq findings in human IBD and experimental mouse models. In each section of this review, we highlight the importance of utilizing this technology to find the most suitable or translational models of IBD based on the cellular therapeutic target.


Assuntos
Colite Ulcerativa , Colite , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Doenças Inflamatórias Intestinais/terapia , Doenças Inflamatórias Intestinais/tratamento farmacológico , RNA
5.
Cancer Cell ; 39(1): 28-37, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33125860

RESUMO

Immune cells' metabolism influences their differentiation and function. Given that a complex interplay of environmental factors within the tumor microenvironment (TME) can have a profound impact on the metabolic activities of immune, stromal, and tumor cell types, there is emerging interest to advance understanding of these diverse metabolic phenotypes in the TME. Here, we discuss cell-extrinsic contributions to the metabolic activities of immune cells. Then, considering recent technical advances in experimental systems and metabolic profiling technologies, we propose future directions to better understand how immune cells meet their metabolic demands in the TME, which can be leveraged for therapeutic benefit.


Assuntos
Sistema Imunitário/metabolismo , Neoplasias/imunologia , Animais , Humanos , Metabolômica , Microambiente Tumoral
6.
Cell Rep Med ; 1(2): 100014, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32478334

RESUMO

Cancer cells display metabolic plasticity to survive stresses in the tumor microenvironment. Cellular adaptation to energetic stress is coordinated in part by signaling through the liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) pathway. Here, we demonstrate that miRNA-mediated silencing of LKB1 confers sensitivity of lymphoma cells to mitochondrial inhibition by biguanides. Using both classic (phenformin) and newly developed (IM156) biguanides, we demonstrate that elevated miR-17∼92 expression in Myc+ lymphoma cells promotes increased apoptosis to biguanide treatment in vitro and in vivo. This effect is driven by the miR-17-dependent silencing of LKB1, which reduces AMPK activation in response to complex I inhibition. Mechanistically, biguanide treatment induces metabolic stress in Myc+ lymphoma cells by inhibiting TCA cycle metabolism and mitochondrial respiration, exposing metabolic vulnerability. Finally, we demonstrate a direct correlation between miR-17∼92 expression and biguanide sensitivity in human cancer cells. Our results identify miR-17∼92 expression as a potential biomarker for biguanide sensitivity in malignancies.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP/genética , Biguanidas/uso terapêutico , Linfoma/tratamento farmacológico , RNA Longo não Codificante/fisiologia , Quinases Proteína-Quinases Ativadas por AMP/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Células HEK293 , Humanos , Linfoma/genética , Linfoma/patologia , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-myc/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cancer Res ; 80(2): 189-203, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31744820

RESUMO

Oncogene activation and loss of tumor suppressor function changes the metabolic activity of cancer cells to drive unrestricted proliferation. Moreover, cancer cells adapt their metabolism to sustain growth and survival when access to oxygen and nutrients is restricted, such as in poorly vascularized tumor areas. We show here that p53-deficient colon cancer cells exposed to tumor-like metabolic stress in spheroid culture activated the mevalonate pathway to promote the synthesis of ubiquinone. This was essential to maintain mitochondrial electron transport for respiration and pyrimidine synthesis in metabolically compromised environments. Induction of mevalonate pathway enzyme expression in the absence of p53 was mediated by accumulation and stabilization of mature SREBP2. Mevalonate pathway inhibition by statins blocked pyrimidine nucleotide biosynthesis and induced oxidative stress and apoptosis in p53-deficient cancer cells in spheroid culture. Moreover, ubiquinone produced by the mevalonate pathway was essential for the growth of p53-deficient tumor organoids. In contrast, inhibition of intestinal hyperproliferation by statins in an Apc/KrasG12D-mutant mouse model was independent of de novo pyrimidine synthesis. Our results highlight the importance of the mevalonate pathway for maintaining mitochondrial electron transfer and biosynthetic activity in cancer cells exposed to metabolic stress. They also demonstrate that the metabolic output of this pathway depends on both genetic and environmental context. SIGNIFICANCE: These findings suggest that p53-deficient cancer cells activate the mevalonate pathway via SREBP2 and promote the synthesis of ubiquinone that plays an essential role in reducing oxidative stress and supports the synthesis of pyrimidine nucleotide.


Assuntos
Ácido Mevalônico/metabolismo , Neoplasias/patologia , Pirimidinas/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Ubiquinona/análogos & derivados , Animais , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/genética , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Estresse Fisiológico , Microambiente Tumoral/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquinona/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Metabolites ; 7(2)2017 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-28531108

RESUMO

Metabolic reprogramming in cancer cells is controlled by the activation of multiple oncogenic signalling pathways in order to promote macromolecule biosynthesis during rapid proliferation. Cancer cells also need to adapt their metabolism to survive and multiply under the metabolically compromised conditions provided by the tumour microenvironment. The tumour suppressor p53 interacts with the metabolic network at multiple nodes, mostly to reduce anabolic metabolism and promote preservation of cellular energy under conditions of nutrient restriction. Inactivation of this tumour suppressor by deletion or mutation is a frequent event in human cancer. While loss of p53 function lifts an important barrier to cancer development by deleting cell cycle and apoptosis checkpoints, it also removes a crucial regulatory mechanism and can render cancer cells highly sensitive to metabolic perturbation. In this review, we will summarise the major concepts of metabolic regulation by p53 and explore how this knowledge can be used to selectively target p53 deficient cancer cells in the context of the tumour microenvironment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA