Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mucosal Immunol ; 15(4): 629-641, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35501356

RESUMO

The nervous system and the immune system both rely on an extensive set of modalities to perceive and act on perturbations in the internal and external environments. During feeding, the intestine is exposed to nutrients that may contain noxious substances and pathogens. Here we show that Vasoactive Intestinal Peptide (VIP), produced by the nervous system in response to feeding, potentiates the production of effector cytokines by intestinal type 2 and type 3 innate lymphoid cells (ILC2s and ILC3s). Exposure to VIP alone leads to modest activation of ILCs, but strongly potentiates ILCs to concomitant or subsequent activation by the inducer cytokines IL-33 or IL-23, via mobilization of cAMP and energy by glycolysis. Consequently, VIP increases resistance to intestinal infection by the helminth Trichuris muris and the enterobacteria Citrobacter rodentium. These findings uncover a functional neuro-immune crosstalk unfolding during feeding that increases the reactivity of innate immunity necessary to face potential threats associated with food intake.


Assuntos
Neuropeptídeos , Peptídeo Intestinal Vasoativo , Citocinas/metabolismo , Imunidade Inata , Intestinos , Linfócitos , Neuropeptídeos/metabolismo
2.
Cell Microbiol ; 18(12): 1831-1845, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27279006

RESUMO

Intestinal epithelial cells (IECs) constitute the primary barrier that separates us from the outside environment. These cells, lining the surface of the intestinal tract, represent a major challenge that enteric pathogens have to face. How IECs respond to viral infection and whether enteric viruses have developed strategies to subvert IECs innate immune response remains poorly characterized. Using mammalian reovirus (MRV) as a model enteric virus, we found that the intermediate subviral particles (ISVPs), which are formed in the gut during the natural course of infection by proteolytic digestion of the reovirus virion, trigger reduced innate antiviral immune response in IECs. On the contrary, infection of IECs by virions induces a strong antiviral immune response that leads to cellular death. Additionally, we determined that virions can be sensed by both TLR and RLR pathways while ISVPs are sensed by RLR pathways only. Interestingly, we found that ISVP infected cells secrete TGF-ß acting as a pro-survival factor that protects IECs against virion induced cellular death. We propose that ISVPs represent a reovirus strategy to initiate primary infection of the gut by subverting IECs innate immune system and by counteracting cellular-death pathways.


Assuntos
Colo/imunologia , Células Epiteliais/imunologia , Interações Hospedeiro-Patógeno , Orthoreovirus de Mamíferos/imunologia , Fator de Crescimento Transformador beta/imunologia , Vírion/imunologia , Morte Celular , Colo/virologia , Células Epiteliais/virologia , Regulação da Expressão Gênica , Hepatócitos/imunologia , Hepatócitos/virologia , Humanos , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Orthoreovirus de Mamíferos/crescimento & desenvolvimento , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Vírion/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA