Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 173: 108306, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554659

RESUMO

The incidence of colorectal cancer (CRC), one of the deadliest cancers around the world, is increasing. Tissue microenvironment (TME) features such as tumor-infiltrating lymphocytes (TILs) can have a crucial impact on diagnosis or decision-making for treating patients with CRC. While clinical studies showed that TILs improve the host immune response, leading to a better prognosis, inter-observer agreement for quantifying TILs is not perfect. Incorporating machine learning (ML) based applications in clinical routine may promote diagnosis reliability. Recently, ML has shown potential for making progress in routine clinical procedures. We aim to systematically review the TILs analysis based on ML in CRC histological images. Deep learning (DL) and non-DL techniques can aid pathologists in identifying TILs, and automated TILs are associated with patient outcomes. However, a large multi-institutional CRC dataset with a diverse and multi-ethnic population is necessary to generalize ML methods.


Assuntos
Neoplasias Colorretais , Linfócitos do Interstício Tumoral , Humanos , Linfócitos do Interstício Tumoral/patologia , Reprodutibilidade dos Testes , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/patologia , Microambiente Tumoral
2.
Diagnostics (Basel) ; 13(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37510083

RESUMO

BACKGROUND: To implement the new marker in clinical practice, reliability assessment, validation, and standardization of utilization must be applied. This study evaluated the reliability of tumor-infiltrating lymphocytes (TILs) and tumor-stroma ratio (TSR) assessment through conventional microscopy by comparing observers' estimations. METHODS: Intratumoral and tumor-front stromal TILs, and TSR, were assessed by three pathologists using 86 CRC HE slides. TSR and TILs were categorized using one and four different proposed cutoff systems, respectively, and agreement was assessed using the intraclass coefficient (ICC) and Cohen's kappa statistics. Pairwise evaluation of agreement was performed using the Fleiss kappa statistic and the concordance rate and it was visualized by Bland-Altman plots. To investigate the association between biomarkers and patient data, Pearson's correlation analysis was applied. RESULTS: For the evaluation of intratumoral stromal TILs, ICC of 0.505 (95% CI: 0.35-0.64) was obtained, kappa values were in the range of 0.21 to 0.38, and concordance rates in the range of 0.61 to 0.72. For the evaluation of tumor-front TILs, ICC was 0.52 (95% CI: 0.32-0.67), the overall kappa value ranged from 0.24 to 0.30, and the concordance rate ranged from 0.66 to 0.72. For estimating the TSR, the ICC was 0.48 (95% CI: 0.35-0.60), the kappa value was 0.49 and the concordance rate was 0.76. We observed a significant correlation between tumor grade and the median of TSR (0.29 (95% CI: 0.032-0.51), p-value = 0.03). CONCLUSIONS: The agreement between pathologists in estimating these markers corresponds to poor-to-moderate agreement; implementing immune scores in daily practice requires more concentration in inter-observer agreements.

3.
Indian J Crit Care Med ; 26(6): 688-695, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35836646

RESUMO

Background: Prioritizing the patients requiring intensive care may decrease the fatality of coronavirus disease-2019 (COVID-19). Aims and objectives: To develop, validate, and compare two models based on machine-learning methods for predicting patients with COVID-19 requiring intensive care. Materials and methods: In 2021, 506 suspected COVID-19 patients, with clinical presentations along with radiographic findings, were laboratory confirmed and included in the study. The primary end-point was patients with COVID-19 requiring intensive care, defined as actual admission to the intensive care unit (ICU). The data were randomly partitioned into training and testing sets (70% and 30%, respectively) without overlapping. A decision-tree algorithm and multivariate logistic regression were performed to develop the models for predicting the cases based on their first 24 hours data. The predictive performance of the models was compared based on the area under the receiver operating characteristic curve (AUC), sensitivity, and accuracy of the models. Results: A 10-fold cross-validation decision-tree model predicted cases requiring intensive care with the AUC, accuracy, and sensitivity of 97%, 98%, and 94.74%, respectively. The same values in the machine-learning logistic regression model were 75%, 85.62%, and 55.26%, respectively. Creatinine, smoking, neutrophil/lymphocyte ratio, temperature, respiratory rate, partial thromboplastin time, white blood cell, Glasgow Coma Scale (GCS), dizziness, international normalized ratio, O2 saturation, C-reactive protein, diastolic blood pressure (DBP), and dry cough were the most important predictors. Conclusion: In an Iranian population, our decision-based machine-learning method offered an advantage over logistic regression for predicting patients requiring intensive care. This method can support clinicians in decision-making, using patients' early data, particularly in low- and middle-income countries where their resources are as limited as Iran. How to cite this article: Sabetian G, Azimi A, Kazemi A, Hoseini B, Asmarian N, Khaloo V, et al. Prediction of Patients with COVID-19 Requiring Intensive Care: A Cross-sectional Study based on Machine-learning Approach from Iran. Indian J Crit Care Med 2022;26(6):688-695. Ethics approval: This study was approved by the Ethical Committee of Shiraz University of Medical Sciences (IR.SUMS.REC.1399.018).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA