Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Cell ; 37(4): 986-996, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38615309

RESUMO

We aimed to elucidate the mechanism underlying carcinogenesis by comparing normal and BRCA1/2-mutated ovarian epithelial cells established via Sendai virus-based immortalization. Ovarian epithelial cells (normal epithelium: Ovn; with germline BRCA1 mutation: OvBRCA1; with germline BRCA2 mutation: OvBRCA2) were infected with Sendai virus vectors carrying three immortalization genes (Bmi-1, hTERT, and SV40T). The immunoreactivity to anti-epithelial cellular adhesion molecule (EpCAM) antibodies in each cell line and cells after 25 passages was confirmed using flow cytometry. Chromosomes were identified and karyotyped to detect numerical and structural abnormalities. Total RNA extracted from the cells was subjected to human transcriptome sequencing. Highly expressed genes in each cell line were confirmed using real-time polymerase chain reaction. Immortalization techniques allowed 25 or more passages of Ovn, OvBRCA1, and OvBRCA2 cells. No anti-EpCAM antibody reactions were observed in primary cultures or after long-term passages of each cell line. Structural abnormalities in the chromosomes were observed in each cell line; however, the abnormal chromosomes were successfully separated from the normal structures via cloning. Only normal cells from each cell line were cloned. MMP1, CCL2, and PAPPA were more predominantly expressed in OvBRCA1 and OvBRCA2 cells than in Ovn cells. Immortalized ovarian cells derived from patients with germline BRCA1 or BRCA2 mutations showed substantially higher MMP1 expression than normal ovarian cells. However, the findings need to be validated in the future.


Assuntos
Proteína BRCA1 , Proteína BRCA2 , Células Epiteliais , Ovário , Humanos , Feminino , Células Epiteliais/metabolismo , Ovário/citologia , Ovário/metabolismo , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Expressão Gênica/genética , Mutação/genética , Linhagem Celular Transformada , Mutação em Linhagem Germinativa/genética , Telomerase/genética , Genes BRCA1 , Carcinogênese/genética
2.
Sci Rep ; 11(1): 20050, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625612

RESUMO

Mammalian artificial chromosomes derived from native chromosomes have been applied to biomedical research and development by generating cell sources and transchromosomic (Tc) animals. Human artificial chromosome (HAC) is a precedent chromosomal vector which achieved generation of valuable humanized animal models for fully human antibody production and human pharmacokinetics. While humanized Tc animals created by HAC vector have attained significant contributions, there was a potential issue to be addressed regarding stability in mouse tissues, especially highly proliferating hematopoietic cells. Mouse artificial chromosome (MAC) vectors derived from native mouse chromosome 11 demonstrated improved stability, and they were utilized for humanized Tc mouse production as a standard vector. In mouse, however, stability of MAC vector derived from native mouse chromosome other than mouse chromosome 11 remains to be evaluated. To clarify the potential of mouse centromeres in the additional chromosomes, we constructed a new MAC vector from native mouse chromosome 10 to evaluate the stability in Tc mice. The new MAC vector was transmitted through germline and stably maintained in the mouse tissues without any apparent abnormalities. Through this study, the potential of additional mouse centromere was demonstrated for Tc mouse production, and new MAC is expected to be used for various applications.


Assuntos
Cromossomos Artificiais , Cromossomos/genética , Células-Tronco Embrionárias/metabolismo , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Vetores Genéticos/genética , Recombinação Genética , Animais , Centrômero , Células-Tronco Embrionárias/citologia , Feminino , Células Germinativas , Masculino , Camundongos , Camundongos Endogâmicos ICR
3.
BMC Biotechnol ; 20(1): 44, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819341

RESUMO

BACKGROUND: Oral administration is the most common way to deliver drugs to the systemic circulation or target organs. Orally administered drugs are absorbed in the intestine and metabolized in the intestine and liver. In the early stages of drug development, it is important to predict first-pass metabolism accurately to select candidate drugs with high bioavailability. The Caco-2 cell line derived from colorectal cancer is widely used as an intestinal model to assess drug membrane permeability. However, because the expression of major drug-metabolizing enzymes, such as cytochrome P450 (CYP), is extremely low in Caco-2 cells, it is difficult to predict intestinal metabolism, which is a significant factor in predicting oral drug bioavailability. Previously, we constructed a mouse artificial chromosome vector carrying the CYP (CYP2C9, CYP2C19, CYP2D6, and CYP3A4) and P450 oxidoreductase (POR) (4CYPs-MAC) genes and increased CYP expression and metabolic activity in HepG2 cells via transfer of this vector. RESULTS: In the current study, to improve the Caco-2 cell assay model by taking metabolism into account, we attempted to increase CYP expression by transferring the 4CYPs-MAC into Caco-2 cells. The Caco-2 cells carrying the 4CYPs-MAC showed higher CYP mRNA expression and activity. In addition, high metabolic activity, availability for permeation test, and the potential to assess drug-drug interactions were confirmed. CONCLUSIONS: The established Caco-2 cells with the 4CYPs-MAC are expected to enable more accurate prediction of the absorption and metabolism in the human intestine than parental Caco-2 cells. The mammalian artificial chromosome vector system would provide useful models for drug development.


Assuntos
Cromossomos Artificiais de Mamíferos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Administração Oral , Animais , Disponibilidade Biológica , Células CACO-2 , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Expressão Gênica , Células Hep G2 , Humanos , Fígado/metabolismo , Camundongos , RNA Mensageiro/metabolismo
4.
Brain Res ; 1724: 146444, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518575

RESUMO

Stem cells offer great hope for the therapy of neurological disorders. Using a human artificial chromosome (HAC), we generated modified mesenchymal stem cells (MSCs), termed HAC-MSC that express 3 growth factors and 2 marker proteins including luciferase, and previously demonstrated that intrathecal administration of HAC-MSCs extended the lifespan in a mouse model of amyotrophic lateral sclerosis (ALS). However, donor cells disappeared rapidly after transplantation. To overcome this poor survival, we transplanted the HAC-MSCs as a sheet structure which retained the extracellular matrix. We investigated, here, whether cell sheet showed a longer survival than intrathecal administration. Also, the therapeutic effects on ALS model mice were examined. In vivo imaging showed that luciferase signals increased immediately after transplantation up to 7 days, and these signals were sustained for up to 14 days. In contrast, following intrathecal administration, signals were drastically decreased by day 3. Moreover, cell sheet transplantation successfully prolonged the survival of donor HAC-MSCs. Cell sheet transplantation increased the level of p-Akt at the graft area. Pathologically, none of the donor cells differentiated into neurons, astrocytes or microglial cells. When the cell sheet was transplanted into ALS model mice, there was an encouraging trend in the delayed onset of symptoms and increased lifespan. If each group was subdivided into rapid and slow progressors based on cut-off values for respective median survival, the survival of rapid progressors differed significantly between groups (treated vs. sham-operated = 145.4 ±â€¯1.4 vs. 139.2 ±â€¯1.2). The effect of HAC-MSC sheet transplantation still has a temporally narrow therapeutic window. Further improvement could be achieved by optimization of the transplantation conditions, e.g. co-transplantation of HAC-MSCs with endothelial progenitor cells.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Engenharia Tecidual/métodos , Esclerose Lateral Amiotrófica/terapia , Animais , Astrócitos/fisiologia , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Matriz Extracelular/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia
5.
Proc Natl Acad Sci U S A ; 116(33): 16404-16409, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31358627

RESUMO

Because spermatogonial stem cells (SSCs) are immortal by serial transplantation, SSC aging in intact testes is considered to be caused by a deteriorated microenvironment. Here, we report a cell-intrinsic mode of SSC aging by glycolysis activation. Using cultured SSCs, we found that aged SSCs proliferated more actively than young SSCs and showed enhanced glycolytic activity. Moreover, they remained euploid and exhibited stable androgenetic imprinting patterns with robust SSC activity despite having shortened telomeres. Aged SSCs showed increased Wnt7b expression, which was associated with decreased Polycomb complex 2 activity. Our results suggest that aberrant Wnt7b expression activated c-jun N-terminal kinase (JNK), which down-regulated mitochondria numbers by suppressing Ppargc1a Down-regulation of Ppargc1a probably decreased reactive oxygen species and enhanced glycolysis. Analyses of the Klotho-deficient aging mouse model and 2-y-old aged rats confirmed JNK hyperactivation and increased glycolysis. Therefore, not only microenvironment but also intrinsic activation of JNK-mediated glycolysis contributes to SSC aging.


Assuntos
Envelhecimento/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Proteínas Proto-Oncogênicas/genética , Espermatogênese/genética , Proteínas Wnt/genética , Células-Tronco Germinativas Adultas/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento , Glucuronidase/genética , Glicólise/genética , Proteínas Klotho , Masculino , Camundongos , Proteínas do Grupo Polycomb/genética , Ratos , Espécies Reativas de Oxigênio/metabolismo , Espermatogônias/crescimento & desenvolvimento , Espermatogônias/metabolismo , Nicho de Células-Tronco/genética , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
6.
Biochem Biophys Res Commun ; 508(2): 603-607, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30509488

RESUMO

Aneuploidy is the gain or loss of a chromosome. Down syndrome or trisomy (Ts) 21 is the most frequent live-born aneuploidy syndrome in humans and extensively studied using model mice. However, there is no available model mouse for other congenital Ts syndromes, possibly because of the lethality of Ts in vivo, resulting in the lack of studies to identify the responsible gene(s) for aneuploid syndromes. Although induced pluripotent stem cells derived from patients are useful to analyse aneuploidy syndromes, there are concerns about differences in the genetic background for comparative studies and clonal variations. Therefore, a model cell line panel with the same genetic background has been strongly desired for sophisticated comparative analyses. In this study, we established isogenic human embryonic stem (hES) cells of Ts8, Ts13, and Ts18 in addition to previously established Ts21 by transferring each single chromosome into parental hES cells via microcell-mediated chromosome transfer. Genes on each trisomic chromosome were globally overexpressed in each established cell line, and all Ts cell lines differentiated into all three embryonic germ layers. This cell line panel is expected to be a useful resource to elucidate molecular and epigenetic mechanisms of genetic imbalance and determine how aneuploidy is involved in various abnormal phenotypes including tumourigenesis and impaired neurogenesis.


Assuntos
Aneuploidia , Cromossomos/metabolismo , Técnicas Genéticas , Células-Tronco Embrionárias Humanas/metabolismo , Modelos Genéticos , Trissomia , Linhagem Celular , Cromossomos/genética , Cromossomos Humanos Par 13 , Cromossomos Humanos Par 18 , Cromossomos Humanos Par 21 , Cromossomos Humanos Par 8 , Humanos , Modelos Biológicos , Fenótipo
7.
EMBO Mol Med ; 10(2): 254-275, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29242210

RESUMO

Transferring large or multiple genes into primary human stem/progenitor cells is challenged by restrictions in vector capacity, and this hurdle limits the success of gene therapy. A paradigm is Duchenne muscular dystrophy (DMD), an incurable disorder caused by mutations in the largest human gene: dystrophin. The combination of large-capacity vectors, such as human artificial chromosomes (HACs), with stem/progenitor cells may overcome this limitation. We previously reported amelioration of the dystrophic phenotype in mice transplanted with murine muscle progenitors containing a HAC with the entire dystrophin locus (DYS-HAC). However, translation of this strategy to human muscle progenitors requires extension of their proliferative potential to withstand clonal cell expansion after HAC transfer. Here, we show that reversible cell immortalisation mediated by lentivirally delivered excisable hTERT and Bmi1 transgenes extended cell proliferation, enabling transfer of a novel DYS-HAC into DMD satellite cell-derived myoblasts and perivascular cell-derived mesoangioblasts. Genetically corrected cells maintained a stable karyotype, did not undergo tumorigenic transformation and retained their migration ability. Cells remained myogenic in vitro (spontaneously or upon MyoD induction) and engrafted murine skeletal muscle upon transplantation. Finally, we combined the aforementioned functions into a next-generation HAC capable of delivering reversible immortalisation, complete genetic correction, additional dystrophin expression, inducible differentiation and controllable cell death. This work establishes a novel platform for complex gene transfer into clinically relevant human muscle progenitors for DMD gene therapy.


Assuntos
Cromossomos Artificiais Humanos , Distrofina/genética , Terapia Genética/métodos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Animais , Células Cultivadas , Vetores Genéticos , Humanos , Camundongos , Modelos Animais , Mutação
8.
ACS Synth Biol ; 6(2): 301-310, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-27696824

RESUMO

Replication, segregation, gene expression, and inheritance are essential features of all eukaryotic chromosomes. To delineate the extent of conservation of chromosome functions between humans and plants during evolutionary history, we have generated the first human cell line containing an Arabidopsis chromosome. The Arabidopsis chromosome was mitotically stable in hybrid cells following cell division, and initially existed as a translocated chromosome. During culture, the translocated chromosomes then converted to two types of independent plant chromosomes without human DNA sequences, with reproducibility. One pair of localization signals of CENP-A, a marker of functional centromeres was detected in the Arabidopsis genomic region in independent plant chromosomes. These results suggest that the chromosome maintenance system was conserved between human and plants. Furthermore, the expression of plant endogenous genes was observed in the hybrid cells, implicating that the plant chromosomal region existed as euchromatin in a human cell background and the gene expression system is conserved between two organisms. The present study suggests that the essential chromosome functions are conserved between evolutionarily distinct organisms such as humans and plants. Systematic analyses of hybrid cells may lead to the production of a shuttle vector between animal and plant, and a platform for the genome writing.


Assuntos
Cromossomos de Plantas/genética , Sequência de Bases/genética , Fusão Celular/métodos , Linhagem Celular Tumoral , Centrômero/genética , DNA/genética , Expressão Gênica/genética , Humanos , Células Híbridas/metabolismo , Reprodutibilidade dos Testes
9.
Mol Ther Nucleic Acids ; 4: e253, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26440597

RESUMO

A human artificial chromosome (HAC) is maintained as an episome within a cell and avoids random integration into the host genome. It can transfer multiple and/or large transgenes along with their regulatory elements thereby resembling native chromosomes. Using this HAC system, we established mesenchymal stem cells (MSCs) that simultaneously expressed hepatocyte growth factor, glial cell line-derived neurotrophic factor, and insulin-like growth factor 1, termed HAC-MSCs. This cell line provides an opportunity for stable transplantation and thorough analyses. We then introduced the cells for the treatment of a neurodegenerative disorder, amyotrophic lateral sclerosis. The HAC-MSCs were transplanted via the fourth cerebral ventricle (CV) or intravenous (i.v.) infusion at various ages of recipient mice. Littermate- and sex-matched mice underwent a sham procedure. Compared to the controls, there was an encouraging trend of increased life span via CV transplantation and delayed onset in i.v. infusion 60 days after transplantation. Further, we confirmed a statistically significant increase in life span via CV transplantation at 100 days. This effect was not seen in mice transplanted with MSCs lacking the HAC. We successfully enhanced the trophic potential of the MSCs using the HAC. This strategy could be a promising direction for the treatment of neurodegenerative disorders.

10.
Biochem Biophys Res Commun ; 442(1-2): 44-50, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24216103

RESUMO

Human artificial chromosomes (HACs) and mouse artificial chromosomes (MACs) display several advantages as gene delivery vectors, such as stable episomal maintenance that avoids insertional mutations and the ability to carry large gene inserts including the regulatory elements. Previously, we showed that a MAC vector developed from a natural mouse chromosome by chromosome engineering was more stably maintained in adult tissues and hematopoietic cells in mice than HAC vectors. In this study, to expand the utility for a gene delivery vector in human cells and mice, we investigated the long-term stability of the MACs in cultured human cells and transchromosomic mice. We also investigated the chromosomal copy number-dependent expression of genes on the MACs in mice. The MAC was stably maintained in human HT1080 cells in vitro during long-term culture. The MAC was stably maintained at least to the F8 and F4 generations in ICR and C57BL/6 backgrounds, respectively. The MAC was also stably maintained in hematopoietic cells and tissues derived from old mice. Transchromosomic mice containing two or four copies of the MAC were generated by breeding. The DNA contents were comparable to the copy number of the MACs in each tissue examined, and the expression of the EGFP gene on the MAC was dependent on the chromosomal copy number. Therefore, the MAC vector may be useful not only for gene delivery in mammalian cells but also for animal transgenesis.


Assuntos
Instabilidade Cromossômica , Cromossomos Artificiais de Mamíferos/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Animais , Linhagem Celular Tumoral , Feminino , Células Germinativas , Humanos , Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Fatores Sexuais
11.
PLoS One ; 6(10): e25961, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21998730

RESUMO

Human artificial chromosomes (HACs) have unique characteristics as gene-delivery vectors, including episomal transmission and transfer of multiple, large transgenes. Here, we demonstrate the advantages of HAC vectors for reprogramming mouse embryonic fibroblasts (MEFs) into induced pluripotent stem (iPS) cells. Two HAC vectors (iHAC1 and iHAC2) were constructed. Both carried four reprogramming factors, and iHAC2 also encoded a p53-knockdown cassette. iHAC1 partially reprogrammed MEFs, and iHAC2 efficiently reprogrammed MEFs. Global gene expression patterns showed that the iHACs, unlike other vectors, generated relatively uniform iPS cells. Under non-selecting conditions, we established iHAC-free iPS cells by isolating cells that spontaneously lost iHAC2. Analyses of pluripotent markers, teratomas and chimeras confirmed that these iHAC-free iPS cells were pluripotent. Moreover, iHAC-free iPS cells with a re-introduced HAC encoding Herpes Simplex virus thymidine kinase were eliminated by ganciclovir treatment, indicating that the HAC safeguard system functioned in iPS cells. Thus, the HAC vector could generate uniform, integration-free iPS cells with a built-in safeguard system.


Assuntos
Engenharia Celular/métodos , Cromossomos Artificiais Humanos/genética , Vetores Genéticos/genética , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Células CHO , Cricetinae , Cricetulus , Fibroblastos/citologia , Genes Transgênicos Suicidas/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Simplexvirus/genética , Timidina Quinase/genética
12.
BMC Biotechnol ; 10: 37, 2010 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-20444293

RESUMO

BACKGROUND: Microcell-mediated chromosome transfer (MMCT) is a technique by which a chromosome(s) is moved from donor to recipient cells by microcell fusion. Polyethylene glycol (PEG) has conventionally been used as a fusogen, and has been very successful in various genetic studies. However, PEG is not applicable for all types of recipient cells, because of its cell type-dependent toxicity. The cytotoxicity of PEG limits the yield of microcell hybrids to low level (10-6 to 10-5 per recipient cells). To harness the full potential of MMCT, a less toxic and more efficient fusion protocol that can be easily manipulated needs to be developed. RESULTS: Microcell donor CHO cells carrying a human artificial chromosome (HAC) were transfected with genes encoding hemagglutinin (H) and fusion (F) proteins of an attenuated Measles Virus (MV) Edmonston strain. Mixed culture of the CHO transfectants and MV infection-competent human fibrosarcoma cells (HT1080) formed multinucleated syncytia, suggesting the functional expression of the MV-H/F in the CHO cells. Microcells were prepared and applied to HT1080 cells, human immortalized mesenchymal stem cells (hiMSC), and primary fibroblasts. Drug-resistant cells appeared after selection in culture with Blasticidin targeted against the tagged selection marker gene on the HAC. The fusion efficiency was determined by counting the total number of stable clones obtained in each experiment. Retention of the HAC in the microcell hybrids was confirmed by FISH analyses. The three recipient cell lines displayed distinct fusion efficiencies that depended on the cell-surface expression level of CD46, which acts as a receptor for MV. In HT1080 and hiMSC, the maximum efficiency observed was 50 and 100 times greater than that using conventional PEG fusion, respectively. However, the low efficiency of PEG-induced fusion with HFL1 was not improved by the MV fusogen. CONCLUSIONS: Ectopic expression of MV envelope proteins provides an efficient recipient cell-oriented MMCT protocol, facilitating extensive applications for studies of gene function and genetic corrections.


Assuntos
Fusão Celular/métodos , Proteína Cofatora de Membrana/química , Proteínas do Envelope Viral/química , Animais , Células CHO , Linhagem Celular Tumoral , Cromossomos Artificiais Humanos , Cricetinae , Cricetulus , Vetores Genéticos , Humanos , Vírus do Sarampo
13.
Mol Ther ; 18(2): 386-93, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19997091

RESUMO

Human artificial chromosome (HAC) has several advantages as a gene therapy vector, including stable episomal maintenance that avoids insertional mutations and the ability to carry large gene inserts including the regulatory elements. Induced pluripotent stem (iPS) cells have great potential for gene therapy, as such cells can be generated from the individual's own tissues, and when reintroduced can contribute to the specialized function of any tissue. As a proof of concept, we show herein the complete correction of a genetic deficiency in iPS cells derived from Duchenne muscular dystrophy (DMD) model (mdx) mice and a human DMD patient using a HAC with a complete genomic dystrophin sequence (DYS-HAC). Deletion or mutation of dystrophin in iPS cells was corrected by transferring the DYS-HAC via microcell-mediated chromosome transfer (MMCT). DMD patient- and mdx-specific iPS cells with the DYS-HAC gave rise to differentiation of three germ layers in the teratoma, and human dystrophin expression was detected in muscle-like tissues. Furthermore, chimeric mice from mdx-iPS (DYS-HAC) cells were produced and DYS-HAC was detected in all tissues examined, with tissue-specific expression of dystrophin. Therefore, the combination of patient-specific iPS cells and HAC-containing defective genes represents a powerful tool for gene and cell therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Distrofia Muscular de Duchenne/terapia , Animais , Células CHO , Linhagem Celular , Células Cultivadas , Cromossomos Artificiais Humanos/genética , Cricetinae , Cricetulus , Distrofina/genética , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Modelos Teóricos , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA