Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hepatol Int ; 18(1): 108-130, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37154991

RESUMO

BACKGROUND: Centrosome amplification is a well-recognized oncogenic driver of tumor initiation and progression across a variety of malignancies and has been linked with tumor aggressiveness, metastasis, and adverse prognosis. Nevertheless, the significance of centrosome amplification in HCC is not well understood. METHODS: The TCGA dataset was downloaded for centrosome amplification-related signature construction using the LASSO-penalized Cox regression algorithm, while the ICGC dataset was obtained for signature validation. Single-cell RNA sequencing from GSE149614 was analyzed to profile gene expression and the liver tumor niche. RESULTS: A total of 134 centrosome amplification-related prognostic genes in HCC were detected and 6 key prognostic genes (SSX2IP, SPAG4, SAC3D1, NPM1, CSNK1D, and CEP55) among them were screened out to construct a signature with both high sensitivity and specificity in diagnosis and prognosis of HCC patients. The signature, as an independent factor, was associated with frequent recurrences, high mortality rates, advanced clinicopathologic features, and high vascular invasions. Moreover, the signature was intimately associated with cell cycle-related pathways and TP53 mutation profile, suggesting its underlying role in accelerating cell cycle progression and leading to liver cancer development. Meanwhile, the signature was also closely correlated with immunosuppressive cell infiltration and immune checkpoint expression, making it a vital immunosuppressive factor in the tumor microenvironment. Upon single-cell RNA sequencing, SSX2IP and SAC3D1 were found to be specially expressed in liver cancer stem-like cells, where they promoted cell cycle progression and hypoxia. CONCLUSIONS: This study provided a direct molecular link of centrosome amplification with clinical characteristics, tumor microenvironment, and clinical drug-response, highlighting the critical role of centrosome amplification in liver cancer development and therapy resistance, thereby providing valuable insights into prognostic prediction and therapeutic response of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Prognóstico , Análise de Célula Única , Centrossomo , Microambiente Tumoral/genética , Proteínas Associadas aos Microtúbulos , Proteínas de Ciclo Celular
2.
Front Immunol ; 13: 950884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238304

RESUMO

Hepatocellular carcinoma (HCC) responds poorly to standard chemotherapy or targeted therapy; hence, exploration for novel therapeutic targets is urgently needed. CEP192 protein is indispensable for centrosome amplification, which has been extensively characterized in both hematological malignancies and solid tumors. Here, we combined bioinformatics and experimental approaches to assess the potential of CEP192 as a prognostic and therapeutic target in HCC. CEP192 expression increased with tumor stage and was associated with poor clinicopathologic features, frequent recurrence, and higher mortality. Upon single-cell RNA sequencing, CEP192 was found to be involved in the proliferation and self-renewal of hepatic progenitor-like cells. This observation was further evidenced using CEP192 silencing, which prevented tumor cell proliferation and self-renewal by arresting cells in the G0/G1 phase of the cell cycle. Notably, CEP192 was highly correlated with multiple tumor-associated cytokine ligand-receptor axes, including IL11-IL11RA, IL6-IL6R, and IL13-IL13RA1, which could promote interactions between hepatic progenitor-like cells, PLVAP+ endothelial cells, tumor-associated macrophages, and CD4+ T cells. Consequently, CEP192 expression was closely associated with an immunosuppressive tumor microenvironment and low immunophenoscores, making it a potential predictor of response to immune checkpoint inhibitors. Taken together, our results unravel a novel onco-immunological role of CEP192 in establishing the immunosuppressive tumor microenvironment and provide a novel biomarker, as well as a potential target for therapeutic intervention of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Proteínas Cromossômicas não Histona/metabolismo , Células Endoteliais/metabolismo , Humanos , Inibidores de Checkpoint Imunológico , Interleucina-11 , Interleucina-13 , Interleucina-6 , Ligantes , Neoplasias Hepáticas/patologia , Prognóstico , Microambiente Tumoral
3.
Aging (Albany NY) ; 12(1): 204-223, 2020 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-31905170

RESUMO

Liver fibrosis biomarker, Type IV collagen, may function as hepatocarcinogenesis niche. However, among the six isoforms, the isoforms providing tumor microenvironment and their regulatory network are still unclarified. Based on bioinformatics analysis of hundreds of HCC transcriptome datasets from public databases, we found that COL4A1/2 expressions were significantly correlated with hepatocarcinogenesis, progression, and prognosis. The expressions of COL4A1/2 were significantly upregulated in the preneoplastic and HCC tissues compared with normal tissues. Moreover, the overexpression of COL4A2 was highly correlated with shorter progression-free survival in HCC patients. Bioinformatics analysis also generates an interactive regulatory network in which COL4A1/2 directly binding to integrin alpha-2/beta-1 initiates a sequentially and complicated signaling transduction, to accelerate cell cycle and promote tumorigenesis. Among those pathways, the PI3K-Akt pathway is significantly enriched in cooperative mutations and correlation analysis. This suggests that the key activated signaling is PI3K-Akt pathway which severing as the centerline linked with other pathways (Wnt and MAPK signaling) and cell behaviors signaling (cell cycle control and cytoskeleton change). Switching extracellular matrix collagen isoform may establish pro-tumorigenic and metastatic niches. The findings of COL4A1/2 and related signaling networks are valuable to be further investigated that may provide druggable targets for HCC intervention.


Assuntos
Transformação Celular Neoplásica/genética , Colágeno Tipo IV/genética , Neoplasias Hepáticas/genética , Biomarcadores , Transformação Celular Neoplásica/metabolismo , Colágeno Tipo IV/metabolismo , Biologia Computacional/métodos , Suscetibilidade a Doenças , Feminino , Quinase 1 de Adesão Focal , Expressão Gênica , Variação Genética , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Modelos Biológicos , Família Multigênica , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transdução de Sinais , Microambiente Tumoral/genética
4.
Stem Cell Res ; 29: 84-87, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29627726

RESUMO

MiR-122 is the most abundant miRNA in the human liver accounting for 52% of the entire hepatic miRNome. Previous studies have demonstrated that miR-122 is a valuable therapeutic target for liver diseases, including viral hepatitis, fibrosis, steatosis, and hepatocarcinoma. Here, we constructed a miR-122 doxycycline-inducible expression human embryonic stem cell line WAe001-A-15 using the piggyBac transposon system. The cell line retained its pluripotency, in vitro differentiation potential, normal morphology, and karyotype.


Assuntos
Doxiciclina/farmacologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , MicroRNAs/biossíntese , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Antibacterianos/farmacologia , Linhagem Celular , Elementos de DNA Transponíveis , Células-Tronco Embrionárias/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes/efeitos dos fármacos
5.
Stem Cell Res ; 27: 5-9, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29278761

RESUMO

The human SMO protein encoded by the smoothened (SMO) gene acts as a positive mediator for Hedgehog signaling. This pathway regulates many cellular activities, developmental morphogenesis, and tumorigenesis. Using CRISPR/Cas9 to edit human embryonic stem cell line WA01 (H1), we established a SMO mutant cell line (WAe001-A-16). This cell line has a 40bp homozygous deletion in exon 2 of SMO leading to a shift in the open reading frame and early termination at amino acid position 287. WAe001-A-16 maintains a normal karyotype, parental cell morphology, pluripotency markers, and the capacity to differentiate into all three germline layers.


Assuntos
Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Receptor Smoothened/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Cílios/genética , Cílios/metabolismo , Células-Tronco Embrionárias/citologia , Humanos , Cariótipo , Fases de Leitura Aberta/genética , Receptor Smoothened/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA