Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; 20(33): e2400963, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38686696

RESUMO

Biomolecule-functionalized nanoparticles represent a type of promising biomaterials in biomedical applications owing to their excellent biocompatibility and versatility. DNA-based reactions on nanoparticles have enabled emerging applications including intelligent biosensors, drug delivery, and biomimetic devices. Among the reactions, strand hybridization is the critical step to control the sensitivity and specificity of biosensing, and the efficiency of drug delivery. However, a comprehensive understanding of DNA hybridization on nanoparticles is still lacking, which may differ from the process in homogeneous solutions. To address this limitation, coarse-grained model-based molecular dynamic simulation is harnessed to disclose the critical factors involved in intermolecular hybridization. Based on simulation guidance, DNA walker-based smart theranostic platform (DWTP) based on "on-particle" hybridization is developed, showing excellent consistency with simulation. DWTP is successfully applied for highly sensitive miRNA 21 detection and tumor-specific miRNA 21 imaging, driven by tumor-endogenous APE 1 enzyme. It enables the precise release of antisense oligonucleotide triggered by tumor-endogenous dual-switch miRNA 21 and APE 1, facilitating effective gene silencing therapy with high biosafety. The simulation of "on-particle" DNA hybridization has improved the corresponding biosensing performance and the release efficiency of therapeutic agents, representing a conceptually new approach for DNA-based device design.


Assuntos
DNA , MicroRNAs , Nanomedicina Teranóstica , DNA/química , Nanomedicina Teranóstica/métodos , Humanos , Hibridização de Ácido Nucleico , Nanopartículas/química , Simulação de Dinâmica Molecular , Técnicas Biossensoriais/métodos
2.
Angew Chem Int Ed Engl ; 63(12): e202320179, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38288561

RESUMO

Nucleic acids in biofluids are emerging biomarkers for the molecular diagnostics of diseases, but their clinical use has been hindered by the lack of sensitive detection assays. Herein, we report the development of a sensitive nucleic acid detection assay named SPOT (sensitive loop-initiated DNAzyme biosensor for nucleic acid detection) by rationally designing a catalytic DNAzyme of endonuclease capability into a unified one-stranded allosteric biosensor. SPOT is activated once a nucleic acid target of a specific sequence binds to its allosteric module to enable continuous cleavage of molecular reporters. SPOT provides a highly robust platform for sensitive, convenient and cost-effective detection of low-abundance nucleic acids. For clinical validation, we demonstrated that SPOT could detect serum miRNAs for the diagnostics of breast cancer, gastric cancer and prostate cancer. Furthermore, SPOT exhibits potent detection performance over SARS-CoV-2 RNA from clinical swabs with high sensitivity and specificity. Finally, SPOT is compatible with point-of-care testing modalities such as lateral flow assays. Hence, we envision that SPOT may serve as a robust assay for the sensitive detection of a variety of nucleic acid targets enabling molecular diagnostics in clinics.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , MicroRNAs , DNA Catalítico/metabolismo , RNA Viral , Endonucleases , Técnicas de Amplificação de Ácido Nucleico
3.
Nat Commun ; 13(1): 7055, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396644

RESUMO

Antigen recognition by the T cell receptor (TCR) of CD4+ T cells can be greatly enhanced by the coreceptor CD4. Yet, understanding of the molecular mechanism is hindered by the ultra-low affinity of CD4 binding to class-II peptide-major histocompatibility complexes (pMHC). Here we show, using two-dimensional (2D) mechanical-based assays, that the affinity of CD4-pMHC interaction is 3-4 logs lower than that of cognate TCR-pMHC interactions, and it is more susceptible to increased dissociation by forces (slip bond). In contrast, CD4 binds TCR-pre-bound pMHC at 3-6 logs higher affinity, forming TCR-pMHC-CD4 tri-molecular bonds that are prolonged by force (catch bond), and modulated by protein mobility on the cell membrane, indicating profound TCR-CD4 cooperativity. Consistent with a tri-crystal structure, using DNA origami as a molecular ruler to titrate spacing between TCR and CD4 we show that 7-nm proximity optimizes TCR-pMHC-CD4 tri-molecular bond formation with pMHC. Our results thus provide deep mechanistic insight into CD4 enhancement of TCR antigen recognition.


Assuntos
Antígenos , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos de Linfócitos T/metabolismo , Complexo Principal de Histocompatibilidade , Antígenos de Histocompatibilidade , Peptídeos/química
4.
ACS Appl Mater Interfaces ; 14(30): 34470-34479, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35867518

RESUMO

DNA nanostructure-based responsive drug delivery has become an increasingly potent method in cancer therapy. However, a variety of important cancer biomarkers have not been explored in searching of new and efficient targeted delivery systems. Uracil degradation glycosylase and human apurinic/apyrimidinic endonuclease are significantly more active in cancer cells. Here, we developed uracil-modified DNA nanotubes that can deliver drugs to tumor cells through an enzyme-induced disassembly process. Although the reaction of these enzymes on their natural DNA substrates has been established, their reactivity on self-assembled nanostructures of nucleic acids is not well understood. We leveraged molecular dynamic simulation based on coarse-grained model to forecast the enzyme reactivity on different DNA designs. The experimental data are highly consistent with the simulation results. It is the first example of molecule simulation being used to guide the design of enzyme-responsive DNA nano-delivery systems. Importantly, we found that the efficiency of drug release from the nanotubes can be regulated by tuning the positions of uracil modification. The DNA nanotubes equipped with cancer-specific aptamer AS1411 are used to deliver doxorubicin to tumor-bearing mice not only effectively inhibiting tumor growth but also protecting major organs from drug-caused damage. We believe that this work provides new knowledge on and insights into future design of enzyme-responsive DNA-based nanocarriers for drug delivery.


Assuntos
Nanotubos , Uracila-DNA Glicosidase , Animais , DNA/química , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Liberação Controlada de Fármacos , Humanos , Camundongos , Uracila/metabolismo
5.
J Exp Clin Cancer Res ; 40(1): 393, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906193

RESUMO

BACKGROUND: Alterations in metabolism are one of the emerging hallmarks of cancer cells and targeting dysregulated cancer metabolism provides a new approach to developing more selective therapeutics. However, insufficient blockade critical metabolic dependencies of cancer allows the development of metabolic bypasses, thus limiting therapeutic benefits. METHODS: A series of head and neck squamous cell carcinoma (HNSCC) cell lines and animal models were used to determine the efficacy of CPI-613 and CB-839 when given alone or in combination. Glutaminase 1 (GLS1) depletion was achieved by lentiviral shRNAs. Cell viability and apoptosis were determined in HNSCC cells cultured in 2D culture dish and SeedEZ™ 3D scaffold. Molecular alterations were examined by Western blotting and immunohistochemistry. Metabolic changes were assessed by glucose uptake, lactate production, glutathione levels, and oxygen consumption rate. RESULTS: We show here that HNSCC cells display strong addiction to glutamine. CPI-613, a novel lipoate analog, redirects cellular activity towards tumor-promoting glutaminolysis, leading to low anticancer efficacy in HNSCC cells. Mechanistically, CPI-613 inhibits the tricarboxylic acid cycle by blocking the enzyme activities of pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase, which upregulates GLS1 and eventually promotes the compensatory role of glutaminolysis in cancer cell survival. Most importantly, the addition of a GLS1 inhibitor CB-839 to CPI-613 treatment abrogates the metabolic dependency of HNSCC cells on glutamine, achieving a synergistic anticancer effect in glutamine-addicted HNSCC. CONCLUSIONS: These findings uncover the critical role of GLS1-mediated glutaminolysis in CPI-613 treatment and suggest that the CB-839 and CPI-613 combination may potentiate synergistic anticancer activity for HNSCC therapeutic gain.


Assuntos
Caprilatos/metabolismo , Glutamina/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Sulfetos/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Camundongos
6.
Adv Healthc Mater ; 10(15): e2002205, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34085411

RESUMO

Over the past few decades, DNA nanotechnology engenders a vast variety of programmable nanostructures utilizing Watson-Crick base pairing. Due to their precise engineering, unprecedented programmability, and intrinsic biocompatibility, DNA nanostructures cannot only interact with small molecules, nucleic acids, proteins, viruses, and cancer cells, but also can serve as nanocarriers to deliver different therapeutic agents. Such addressability innate to DNA nanostructures enables their use in various fields of biomedical applications such as biosensors and cancer therapy. This review is begun with a brief introduction of the development of DNA nanotechnology, followed by a summary of recent applications of DNA nanostructures in biosensors and therapeutics. Finally, challenges and opportunities for practical applications of DNA nanotechnology are discussed.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Ácidos Nucleicos , DNA , Humanos , Nanotecnologia
7.
Biosens Bioelectron ; 179: 113079, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33636500

RESUMO

Fragmented DNA from blood plasma, i.e., cell-free DNA, has received great interest as a noninvasive diagnostic biomarker for "point-of-care" testing or liquid biopsy. Here, we present a new approach for accurate genotyping of highly fragmented DNA. Based on toehold-mediated strand displacement, a toehold-assisted padlock probe and toehold blocker were designed and demonstrated with new controllability in significantly suppressing undesired cross-reaction, promoting target recycling and point mutation detection by tuning the thermodynamic properties. Furthermore, toehold-assisted padlock probe systems were elaborately designed for 14 different single-nucleotide variants (SNVs) and were demonstrated to be able to detect low concentration of variant alleles (0.1%). In addition, a target, spanning a narrow sequence window of 29 nucleotides on average is sufficient for the toehold-assisted padlock probe system, which is valuable for the analysis of highly fragmented DNA molecules from clinical samples. We further demonstrated that the toehold-assisted padlock probe, in combination with a unique asymmetric PCR technique, could detect more target SNVs at low allele fractions (1%) in highly fragmented cfDNA. This allows accurate genotyping and provides a new commercial approach for high-resolution analysis of genetic variation.


Assuntos
Técnicas Biossensoriais , DNA/genética , Genótipo , Limite de Detecção , Nucleotídeos
8.
Angew Chem Int Ed Engl ; 59(41): 18249-18255, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32643299

RESUMO

We present a strategy of interfacially bridging covalent network within tobacco mosaic virus (TMV) virus-like particles (VLPs). We arranged T103C cysteine to laterally conjugate adjacent subunits. In the axis direction, we set A74C mutation and systematically investigated candidate from E50C to P54C as the other thiol function site, for forming longitudinal disulfide bond chains. Significantly, the T103C-TMV-E50C-A74C shows the highest robustness in assembly capability and structural stability with the largest length, for TMV VLP to date. The fibers with lengths from several to a dozen of micrometers even survive under pH 13. The robust nature of this TMV VLP allows for reducer-free synthesis of excellent electrocatalysts for application in harshly alkaline hydrogen evolution.

10.
Nano Lett ; 20(4): 2799-2805, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32208663

RESUMO

Magnetic iron oxide nanoparticles (IONPs) have received significant interest for the use in biomedical applications. The assembly of IONPs into larger superstructures has been used to modify the properties and functionality of these particles. For example, the clustering of IONPs can lead to improvements in MRI contrast generation, changes in heat generation during magnetic fluid hyperthermia, and alterations to pharmacokinetics and biodistribution. Nevertheless, the IONP clustering leads to significant heterogeneity in the assembly. Here, we demonstrate a method for using DNA origami to precisely control the number and positions of IONPs. We also showed how this technique can be used to module the functionality of IONP clusters by showing how MRI contrast generation efficiency can be tuned by altering the number and spacing of IONPs. Finally, we show that these property changes can be dynamically regulated, demonstrating the possibility for this technology to be used in biosensing applications.


Assuntos
DNA/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanoestruturas/química , Meios de Contraste/química , Dimerização , Nanopartículas Magnéticas de Óxido de Ferro/ultraestrutura , Imageamento por Ressonância Magnética , Nanoestruturas/ultraestrutura , Nanotecnologia
11.
J Am Chem Soc ; 142(13): 5929-5932, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32191463

RESUMO

Biomolecular assembly in biological systems is typically a complex dynamic process regulated by the exchange of molecular information between biomolecules such as proteins and nucleic acids. Here, we demonstrate a nucleic-acid-based system that can program the dynamic assembly process of viral proteins. Tobacco mosaic virus (TMV) genome-mimicking RNA is anchored on DNA origami nanostructures via hybridization with a series of DNA strands which also function as locks that prevent the packaging of RNA by the TMV proteins. The selective, sequential releasing of the RNA via toehold-mediated strand displacement allows us to program the availability of RNA and subsequently the TMV growth in situ. Furthermore, the programmable dynamic assembly of TMV on DNA templates also enables the production of new DNA-protein hybrid nanostructures, which are not attainable by using previous assembly methods.


Assuntos
DNA/química , Nanoestruturas/química , RNA Viral/química , Vírus do Mosaico do Tabaco/química , Proteínas Virais/química , DNA/genética , Modelos Moleculares , Nanoestruturas/ultraestrutura , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , RNA Viral/genética , Vírus do Mosaico do Tabaco/genética , Proteínas Virais/genética
12.
Chem Sci ; 11(1): 62-69, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-32110357

RESUMO

RNA imaging in living animals helps decipher biology and creates new theranostics for disease treatment. Due to their low delivery efficiency and high background, however, fluorescence probes for in situ RNA imaging in living mice have not been reported. We develop a new cell-targeting fluorescent probe that enables RNA imaging in living mice via an in vivo hybridization chain reaction (HCR). The minimalistic Y-shaped design of the tripartite DNA probe improves its performance in live animal studies and serves as a modular scaffold for three DNA motifs for cell-targeting and the HCR circuit. The tripartite DNA probe allows facile synthesis with a high yield and demonstrates ultrasensitive RNA detection in vitro. The probe also exhibits selective and efficient internalization into folate (FA) receptor-overexpressed cells via a caveolar-mediated endocytosis mechanism and produces fluorescence signals dynamically correlated with intracellular target expressions. Furthermore, the probe exhibits specific delivery into tumor cells and allows high-contrast imaging of miR-21 in living mice. The tripartite DNA design may open the door for intracellular RNA imaging in living animals using DNA-minimal structures and its design strategy can help future development of DNA-based multi-functional molecular probes.

13.
ACS Nano ; 14(12): 17365-17375, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36350012

RESUMO

Though small-molecule drugs play a crucial role in cancer treatment, intrinsic issues such as poor solubility and systematic toxicity have considerably mitigated their anticancer functions and caused unwanted side effects. To achieve satisfying therapeutic efficiency, it is essential to develop innovative targeting systems for precise and efficient delivery of anticancer drugs. In this work, a hierarchical self-assembly strategy was applied to fabricate a core-shell nanoarchitecture composed of a DNA octahedral wireframe and chemodrug-functionalized Sgc8c aptamer. The integrated enhanced permeability and retention effect of the DNA nanostructure and active targeting ability of the Sgc8c aptamer allowed the highly selective chemodrug delivery and in vivo efficient imaging and treatment. The advantage of our multifunctional nanostructure was further highlighted by its impressive serum stability, excellent accumulation ability, deep penetration capability, significantly improved therapeutic efficacy, and favorable biosafety. This study showed promising potential of such a core-shell DNA nanoarchitecture in precise drug loading control, drug delivery, and personal medicine.

14.
ACS Appl Mater Interfaces ; 11(33): 29512-29521, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31397552

RESUMO

Here we reported a study of metal ions-assisted assembly of DNA-minocycline (MC) complexes and their potential application for controlling MC release. In the presence of divalent cations of magnesium or calcium ions (M2+), MC, a zwitterionic tetracycline analogue, was found to bind to phosphate groups of nucleic acids via an electrostatic bridge of phosphate (DNA)-M2+-MC. We investigated multiple parameters for affecting the formation of DNA-Mg2+-MC complex, including metal ion concentrations, base composition, DNA length, and single- versus double-stranded DNA. For different nitrogen bases, single-stranded poly(A)20 and poly(T)20 showed a higher MC entrapment efficiency of DNA-Mg2+-MC complex than poly(C)20 and poly(G)20. Single-stranded DNA was also found to form a more stable DNA-Mg2+-MC complex than double-stranded DNA. Between different divalent metal ions, we observed that the formation of DNA-Ca2+-MC complex was more stable and efficient than the formation of DNA-Mg2+-MC complex. Toward drug release, we used agarose gel to encapsulate DNA-Mg2+-MC complexes and monitored MC release. Some DNA-Mg2+-MC complexes could prolong MC release from agarose gel to more than 10 days as compared with the quick release of free MC from agarose gel in less than 1 day. The released MC from DNA-Mg2+-MC complexes retained the anti-inflammatory bioactivity to inhibit nitric oxide production from pro-inflammatory macrophages. The reported study of metal ion-assisted DNA-MC assembly not only increased our understanding of biochemical interactions between tetracycline molecules and nucleic acids but also contributed to the development of a highly tunable drug delivery system to mediate MC release for clinical applications.


Assuntos
DNA/química , Íons/química , Minociclina/química , Animais , Anti-Inflamatórios/química , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Macrófagos/metabolismo , Camundongos , Células RAW 264.7
15.
J Am Chem Soc ; 140(26): 8074-8077, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29932333

RESUMO

Engineering hybrid protein-DNA assemblies in a controlled manner has attracted particular attention, for their potential applications in biomedicine and nanotechnology due to their intricate folding properties and important physiological roles. Although DNA origami has served as a powerful platform for spatially arranging functional molecules, in situ assembly of proteins onto DNA origami is still challenging, especially in a precisely controlled and facile manner. Here, we demonstrate in situ assembly of tobacco mosaic virus (TMV) coat proteins onto DNA origami to generate programmable assembly of hybrid DNA origami-protein nanoarchitectures. The protein nanotubes of controlled length are precisely anchored on the DNA origami at selected locations using TMV genome-mimicking RNA strands. This study opens a new route to the organization of protein and DNA into sophisticated protein-DNA nanoarchitectures by harnessing the viral encapsidation mechanism and the programmability of DNA origami.


Assuntos
DNA/química , Nanoestruturas/química , Vírus do Mosaico do Tabaco/química , Proteínas Virais/química , Tamanho da Partícula
16.
Nano Lett ; 18(8): 4803-4811, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29911385

RESUMO

Mechanical forces are central to most, if not all, biological processes, including cell development, immune recognition, and metastasis. Because the cellular machinery mediating mechano-sensing and force generation is dependent on the nanoscale organization and geometry of protein assemblies, a current need in the field is the development of force-sensing probes that can be customized at the nanometer-length scale. In this work, we describe a DNA origami tension sensor that maps the piconewton (pN) forces generated by living cells. As a proof-of-concept, we engineered a novel library of six-helix-bundle DNA-origami tension probes (DOTPs) with a tailorable number of tension-reporting hairpins (each with their own tunable tension response threshold) and a tunable number of cell-receptor ligands. We used single-molecule force spectroscopy to determine the probes' tension response thresholds and used computational modeling to show that hairpin unfolding is semi-cooperative and orientation-dependent. Finally, we use our DOTP library to map the forces applied by human blood platelets during initial adhesion and activation. We find that the total tension signal exhibited by platelets on DOTP-functionalized surfaces increases with the number of ligands per DOTP, likely due to increased total ligand density, and decreases exponentially with the DOTP's force-response threshold. This work opens the door to applications for understanding and regulating biophysical processes involving cooperativity and multivalency.


Assuntos
Técnicas Biossensoriais/instrumentação , Sondas de DNA/química , DNA/química , Técnicas Biossensoriais/métodos , Plaquetas/fisiologia , Adesão Celular , Linhagem Celular , Simulação por Computador , Eritrócitos/química , Biblioteca Gênica , Humanos , Ligantes , Mecanotransdução Celular , Método de Monte Carlo , Nanopartículas/química , Conformação de Ácido Nucleico , Tamanho da Partícula , Estudo de Prova de Conceito , Estreptavidina/química
17.
J Am Chem Soc ; 140(7): 2478-2484, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29406750

RESUMO

DNA origami is a promising molecular delivery system for a variety of therapeutic applications including cancer therapy, given its capability to fabricate homogeneous nanostructures whose physicochemical properties (size, shape, surface chemistry) can be precisely tailored. However, the correlation between DNA-origami design and internalization efficiency in different cancer cell lines remains elusive. We investigated the cellular uptake of four DNA-origami nanostructures (DONs) with programmed sizes and shapes in multiple human cancer cell lines. The cellular uptake efficiency of DONs was influenced by size, shape, and cell line. Scavenger receptors were responsible for the internalization of DONs into cancer cells. We observed distinct stages of the internalization process of a gold nanoparticle (AuNP)-tagged rod-shape DON, using high-resolution transmission electron microscopy. This study provides detailed understanding of cellular uptake and intracellular trafficking of DONs in cancer cells, and offers new insights for future optimization of DON-based drug delivery systems for cancer treatment.


Assuntos
DNA/farmacocinética , Ouro/farmacocinética , Nanopartículas Metálicas/química , Linhagem Celular Tumoral , DNA/química , Sistemas de Liberação de Medicamentos , Ouro/química , Humanos , Tamanho da Partícula
18.
Angew Chem Int Ed Engl ; 56(50): 16023-16027, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29076273

RESUMO

Short interfering RNA (siRNA) is a promising molecular tool for cancer therapy, but its clinical success is limited by the lack of robust in vivo delivery systems. Rationally designed DNA nanoparticles (DNPs) have emerged as facile delivery vehicles because their physicochemical properties can be precisely controlled. Nonetheless, few studies have used DNPs to deliver siRNAs in vivo, and none has demonstrated therapeutic efficacy. Herein, we constructed a number of DNPs of rectangular and tubular shapes with varied dimensions using the modular DNA brick method for the systemic delivery of siRNA that targets anti-apoptotic protein Bcl2. The siRNA delivered by the DNPs inhibited cell growth both in vitro and in vivo, which suppressed tumor growth in a xenograft model that specifically correlated with Bcl2 depletion. This study suggests that DNPs are effective tools for the systemic delivery of therapeutic siRNA and have great potential for further clinical translation.


Assuntos
Antineoplásicos/administração & dosagem , DNA/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Humanos , Camundongos , Neoplasias/genética , Neoplasias/patologia , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Tamanho da Partícula , Proteínas Proto-Oncogênicas c-bcl-2/deficiência , RNA Interferente Pequeno/síntese química , RNA Interferente Pequeno/química , Propriedades de Superfície , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Am Chem Soc ; 139(40): 14025-14028, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949522

RESUMO

We describe the co-assembly of two different building units: collagen-mimetic peptides and DNA origami. Two peptides CP++ and sCP++ are designed with a sequence comprising a central block (Pro-Hyp-Gly) and two positively charged domains (Pro-Arg-Gly) at both N- and C-termini. Co-assembly of peptides and DNA origami two-layer (TL) nanosheets affords the formation of one-dimensional nanowires with repeating periodicity of ∼10 nm. Structural analyses suggest a face-to-face stacking of DNA nanosheets with peptides aligned perpendicularly to the sheet surfaces. We demonstrate the potential of selective peptide-DNA association between face-to-face and edge-to-edge packing by tailoring the size of DNA nanostructures. This study presents an attractive strategy to create hybrid biomolecular assemblies from peptide- and DNA-based building blocks that takes advantage of the intrinsic chemical and physical properties of the respective components to encode structural and, potentially, functional complexity within readily accessible biomimetic materials.


Assuntos
Materiais Biocompatíveis/química , Materiais Biomiméticos/química , Colágeno/química , DNA/química , Nanoestruturas/química , Peptídeos/química , Nanoestruturas/ultraestrutura , Nanotecnologia
20.
Science ; 319(5860): 180-3, 2008 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-18187649

RESUMO

The DNA origami method, in which long, single-stranded DNA segments are folded into shapes by short staple segments, was used to create nucleic acid probe tiles that are molecular analogs of macroscopic DNA chips. One hundred trillion probe tiles were fabricated in one step and bear pairs of 20-nucleotide-long single-stranded DNA segments that act as probe sequences. These tiles can hybridize to their targets in solution and, after adsorption onto mica surfaces, can be examined by atomic force microscopy in order to quantify binding events, because the probe segments greatly increase in stiffness upon hybridization. The nucleic acid probe tiles have been used to study position-dependent hybridization on the nanoscale and have also been used for label-free detection of RNA.


Assuntos
Perfilação da Expressão Gênica/métodos , Técnicas de Sonda Molecular , Nanoestruturas , Hibridização de Ácido Nucleico/métodos , Sondas de Oligonucleotídeos , RNA/análise , Actinas/genética , Adsorção , Silicatos de Alumínio , Animais , Linhagem Celular , DNA de Cadeia Simples , Genes RAG-1 , Genes myc , Camundongos , Microscopia de Força Atômica , RNA/genética , Sensibilidade e Especificidade , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA