Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 60, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347587

RESUMO

Mesenchymal stem cells/stromal cells (MSCs)-derived extracellular vesicles (EVs) mediate pro-regenerative effects in damaged ischemic tissues by regulating angiogenesis. MSCs-EVs modulate functions of cells including endogenous mature cells, progenitors and stem cells, resulting in restoration of blood flow. However, the mechanisms underlying such MSC-EV activity still remain poorly understood. The present study analyzes biological effects of bone marrow (BM) MSC-EVs on endothelial cells (ECs) in ischemic tissues both in in vitro and in vivo conditions and elucidates the molecular mechanisms underlying the tissue repair. MSC-EVs were isolated from murine BM-derived MSCs and their morphological, antigenic and molecular composition regarding protein and microRNA levels were evaluated to examine their properties. Global proteomic analysis demonstrated the presence in MSC-EVs of proteins regulating pro-regenerative pathways, including integrin α5 (Itgα5) and neuropilin-1 (NRP1) involved in lymphangiogenesis. MSC-EVs were also enriched in microRNAs regulating angiogenesis, TGF-ß signaling and processes guiding cellular adhesion and interactions with extracellular matrix. The functional effects of MSC-EVs on capillary ECs in vitro included the increase of capillary-like tube formation and cytoprotection under normal and inflammatory conditions by inhibiting apoptosis. Notably, MSC-EVs enhanced also capillary-like tube formation of lymphatic ECs, which may be regulated by Itgα5 and NRP1. Moreover, in a mouse model of critical hind limb ischemia, MSC-EVs increased the recovery of blood flow in ischemic muscle tissue, which was accompanied with increased vascular density in vivo. This pro-angiogenic effect was associated with an increase in nitric oxide (NO) production via endothelial NO-synthase activation in ischemic muscles. Interestingly, MSC-EVs enhanced lymphangiogenesis, which has never been reported before. The study provides evidence on pro-angiogenic and novel pro-lymphangiogenic role of MSC-EVs on ECs in ischemic tissue mediated by their protein and miRNA molecular cargos. The results highlight Itgα5 and NRP1 carried by MSC-EVs as potential therapeutic targets to boost lymphangiogenesis.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neuropilina-1/metabolismo , Células Endoteliais/metabolismo , Linfangiogênese , Proteômica , Vesículas Extracelulares/metabolismo , Isquemia/metabolismo
2.
Cell Mol Biol Lett ; 27(1): 100, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401206

RESUMO

BACKGROUND: Metformin is an inhibitor of oxidative phosphorylation that displays an array of anticancer activities. The interference of metformin with the activity of multi-drug resistance systems in cancer cells has been reported. However, the consequences of the acquired chemoresistance for the adaptative responses of cancer cells to metformin-induced stress and for their phenotypic evolution remain unaddressed. METHODS: Using a range of phenotypic and metabolic assays, we assessed the sensitivity of human prostate cancer PC-3 and DU145 cells, and their drug-resistant lineages (PC-3_DCX20 and DU145_DCX20), to combined docetaxel/metformin stress. Their adaptation responses have been assessed, in particular the shifts in their metabolic profile and invasiveness. RESULTS: Metformin increased the sensitivity of PC-3 wild-type (WT) cells to docetaxel, as illustrated by the attenuation of their motility, proliferation, and viability after the combined drug application. These effects correlated with the accumulation of energy carriers (NAD(P)H and ATP) and with the inactivation of ABC drug transporters in docetaxel/metformin-treated PC-3 WT cells. Both PC-3 WT and PC-3_DCX20 reacted to metformin with the Warburg effect; however, PC-3_DCX20 cells were considerably less susceptible to the cytostatic/misbalancing effects of metformin. Concomitantly, an epithelial-mesenchymal transition and Cx43 upregulation was seen in these cells, but not in other more docetaxel/metformin-sensitive DU145_DCX20 populations. Stronger cytostatic effects of the combined fenofibrate/docetaxel treatment confirmed that the fine-tuning of the balance between energy supply and expenditure determines cellular welfare under metabolic stress. CONCLUSIONS: Collectively, our data identify the mechanisms that underlie the limited potential of metformin for the chemotherapy of drug-resistant tumors. Metformin can enhance the sensitivity of cancer cells to chemotherapy by inducing their metabolic decoupling/imbalance. However, the acquired chemoresistance of cancer cells impairs this effect, facilitates cellular adaptation to metabolic stress, and prompts the invasive front formation.


Assuntos
Antineoplásicos , Citostáticos , Metformina , Neoplasias da Próstata , Humanos , Masculino , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Taxoides/farmacologia , Taxoides/uso terapêutico , Citostáticos/farmacologia , Citostáticos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias da Próstata/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Estresse Fisiológico
3.
J Biomech ; 144: 111346, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36252307

RESUMO

The stiffening or softening of cancers observed in nanoindentation experiments has been recognized as a marker of cancer-related changes. In bladder cancers, continuous stretching/destretching is observed due to its functionality, indicating that shear forces dominate the mechanical response of these cells. Thus, nanoindentation and microrheological measurements conducted in parallel allow for a fully reliable mechanomarker of cancer progression. Here, bladder cancer cell lines, i.e., non-malignant cell cancer of the ureter (HCV29), bladder carcinoma (HT1376), and transitional cell carcinoma (T24), were studied. Nanoindentation and microrheological experiments were conducted on individual cells, cell monolayers, and spheroids that were formed using non-adherent surface plates. The results show that nanoindentation experiments can only differentiate between non-malignant HCV29 (stiffer) and cancerous HT1376 and T24 (softer) cells. Applying microrheology recognizes the type of grade 3 bladder cancers (carcinoma HT1376 or transitional cell carcinoma T24 cells). We showed that actin filaments are a vital element defining the rheological properties of spheroids. Differences in mechanical properties of cell monolayers could be associated with thick actin bundles and intercellular connections, with some extracellular matrix (ECM) contributing to the stiffening of such monolayers. Our findings demonstrate that a complete image of how cancer cells respond to mechanical stress (compressive and shear forces) can only be obtained after microrheological measurements using the transition frequency separating elastic and viscous regimes as a non-labeled biomarker of bladder cancer progression.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Carcinoma de Células de Transição/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Células Epiteliais/metabolismo , Bexiga Urinária , Matriz Extracelular/metabolismo
4.
Cells ; 11(7)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35406748

RESUMO

Proteins carried by tumor-derived ectosomes play an important role in cancer progression, and are considered promising diagnostic markers. In the present study, a shotgun nanoLC-MS/MS proteomic approach was applied to profile and compare the protein content of ectosomes released in vitro by normal human thyroid follicular epithelial Nthy-ori 3-1 cells and human anaplastic thyroid carcinoma (TC) 8305C cells. Additionally, the pro-migratory and pro-proliferative effects of Nthy-ori 3-1- and 8305C-derived ectosomes exerted on the recipient cells were assessed in wound closure and Alamar Blue assays. A total of 919 proteins were identified in all replicates of 8305C-derived ectosomes, while Nthy-ori 3-1-derived ectosomes contained a significantly lower number of 420 identified proteins. Qualitative analysis revealed 568 proteins present uniquely in 8305C-derived ectosomes, suggesting their applicability in TC diagnosis and management. In addition, 8305C-derived ectosomes were able to increase the proliferation and motility rates of the recipient cells, likely due to the ectosomal transfer of the identified cancer-promoting molecules. Our description of ectosome protein content and its related functions provides the first insight into the role of ectosomes in TC development and progression. The results also indicate the applicability of some of these ectosomal proteins for further investigation regarding their potential as circulating TC biomarkers.


Assuntos
Micropartículas Derivadas de Células , Neoplasias da Glândula Tireoide , Micropartículas Derivadas de Células/metabolismo , Humanos , Proteômica , Espectrometria de Massas em Tandem , Neoplasias da Glândula Tireoide/metabolismo
5.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202855

RESUMO

Protein content of extracellular vesicles (EVs) can modulate different processes during carcinogenesis. Novel proteomic strategies have been applied several times to profile proteins present in exosomes released by urothelial bladder cancer (UBC) cells. However, similar studies have not been conducted so far on another population of EVs, i.e., ectosomes. In the present study we used a shotgun nanoLC-MS/MS proteomic approach to investigate the protein content of ectosomes released in vitro by T-24 UBC cells and HCV-29 normal ureter epithelial cells. In addition, cancer-promoting effects exerted by UBC-derived ectosomes on non-invasive cells in terms of cell proliferation and migratory properties were assessed. In total, 1158 proteins were identified in T-24-derived ectosomes, while HCV-29-derived ectosomes contained a lower number of 259 identified proteins. Qualitative analysis revealed 938 proteins present uniquely in T-24-derived ectosomes, suggesting their potential applications in bladder cancer management as diagnostic and prognostic biomarkers. In addition, T-24-derived ectosomes increased proliferation and motility of recipient cells, likely due to the ectosomal transfer of the identified cancer-promoting molecules. The present study provided a focused identification of biologically relevant proteins in UBC-derived ectosomes, confirming their role in UBC development and progression, and their applicability for further biomarker-oriented studies in preclinical or clinical settings.


Assuntos
Exossomos/metabolismo , Proteoma , Proteômica , Neoplasias da Bexiga Urinária/metabolismo , Biomarcadores Tumorais , Carcinoma de Células de Transição/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Micropartículas Derivadas de Células/metabolismo , Cromatografia Líquida , Biologia Computacional/métodos , Progressão da Doença , Vesículas Extracelulares/metabolismo , Humanos , Proteômica/métodos , Espectrometria de Massas em Tandem
6.
Neurochem Res ; 46(8): 2097-2111, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34024016

RESUMO

Although antipsychotics are routinely used in the treatment of schizophrenia for the last decades, their precise mechanism of action is still unclear. In this study, we investigated changes in the PC12 cells' proteome under the influence of clozapine, risperidone, and haloperidol to identify protein pathways regulated by antipsychotics. Analysis of the protein profiles in two time points: after 12 and 24 h of incubation with drugs revealed significant alterations in 510 proteins. Further canonical pathway analysis revealed an inhibition of ciliary trophic factor signaling after treatment with haloperidol and showed a decrease in acute phase response signaling in the risperidone group. Interestingly, all tested drugs have caused changes in PC12 proteome which correspond to inhibition of cytokines: tumor necrosis factor (TNF) and transforming growth factor beta 1 (TGF-ß1). We also found that the 12-h incubation with clozapine caused up-regulation of protein kinase A signaling and translation machinery. After 24 h of treatment with clozapine, the inhibition of the actin cytoskeleton signaling and Rho proteins signaling was revealed. The obtained results suggest that the mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) play a central role in the signal transduction of clozapine.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Antipsicóticos/farmacologia , Clozapina/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Reação de Fase Aguda/metabolismo , Animais , Fator Neurotrófico Ciliar/metabolismo , Haloperidol/farmacologia , Células PC12 , Proteoma/metabolismo , Ratos , Risperidona/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo
7.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672341

RESUMO

Accumulating evidence suggests that six proteases encoded in the spl operon of a dangerous human pathogen, Staphylococcus aureus, may play a role in virulence. Interestingly, SplA, B, D, and E have complementary substrate specificities while SplF remains to be characterized in this regard. Here, we describe the prerequisites of a heterologous expression system for active SplF protease and characterize the enzyme in terms of substrate specificity and its structural determinants. Substrate specificity of SplF is comprehensively profiled using combinatorial libraries of peptide substrates demonstrating strict preference for long aliphatic sidechains at the P1 subsite and significant selectivity for aromatic residues at P3. The crystal structure of SplF was provided at 1.7 Å resolution to define the structural basis of substrate specificity of SplF. The obtained results were compared and contrasted with the characteristics of other Spl proteases determined to date to conclude that the spl operon encodes a unique extracellular proteolytic system.


Assuntos
Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Metionina/metabolismo , Modelos Moleculares , Peptídeo Hidrolases/genética , Peptídeos/química , Peptídeos/metabolismo , Especificidade por Substrato
8.
Cancers (Basel) ; 12(7)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664538

RESUMO

Rhabdomyosarcoma (RMS) is a predominant soft tissue tumor in children and adolescents. For high-grade RMS with metastatic involvement, the 3-year overall survival rate is only 25 to 30%. Thus, understanding the regulatory mechanisms involved in promoting the metastasis of RMS is important. Here, we demonstrate for the first time that the SNAIL transcription factor regulates the metastatic behavior of RMS both in vitro and in vivo. SNAIL upregulates the protein expression of EZRIN and AKT, known to promote metastatic behavior, by direct interaction with their promoters. Our data suggest that SNAIL promotes RMS cell motility, invasion and chemotaxis towards the prometastatic factors: HGF and SDF-1 by regulating RHO, AKT and GSK3b activity. In addition, miRNA transcriptome analysis revealed that SNAIL-miRNA axis regulates processes associated with actin cytoskeleton reorganization. Our data show a novel role of SNAIL in regulating RMS cell metastasis that may also be important in other mesenchymal tumor types and clearly suggests SNAIL as a promising new target for future RMS therapies.

9.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331267

RESUMO

Cutaneous melanoma (CM) is an aggressive type of skin cancer for which effective biomarkers are still needed. Recently, the protein content of extracellular vesicles (ectosomes and exosomes) became increasingly investigated in terms of its functional role in CM and as a source of novel biomarkers; however, the data concerning the proteome of CM-derived ectosomes is very limited. We used the shotgun nanoLC-MS/MS approach to the profile protein content of ectosomes from primary (WM115, WM793) and metastatic (WM266-4, WM1205Lu) CM cell lines. Additionally, the effect exerted by CM ectosomes on recipient cells was assessed in terms of cell proliferation (Alamar Blue assay) and migratory properties (wound healing assay). All cell lines secreted heterogeneous populations of ectosomes enriched in the common set of proteins. A total of 1507 unique proteins were identified, with many of them involved in cancer cell proliferation, migration, escape from apoptosis, epithelial-mesenchymal transition and angiogenesis. Isolated ectosomes increased proliferation and motility of recipient cells, likely due to the ectosomal transfer of different cancer-promoting molecules. Taken together, these results confirm the significant role of ectosomes in several biological processes leading to CM development and progression, and might be used as a starting point for further studies exploring their diagnostic and prognostic potential.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Melanoma/metabolismo , Proteômica , Neoplasias Cutâneas/metabolismo , Espectrometria de Massas em Tandem , Biomarcadores , Linhagem Celular Tumoral , Cromatografia Líquida , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Melanoma/genética , Neoplasias Cutâneas/genética , Melanoma Maligno Cutâneo
10.
Toxicol In Vitro ; 62: 104676, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31629898

RESUMO

Bisphenol A (BPA) is commonly present in plastics used for food storage and preservation. The release of BPA from these products results in a permanent human exposition to BPA; however, the quality and quantity of BPA adverse effects remain a matter of controversy. The common presence of BPA in the human environment and the controversies concerning the relations of human exposition to BPA and cancer incidence justify the research on the interactions between BPA and pro-metastatic signaling in cancer cells. Here, we describe a novel BPA-reactive signaling axis that induces the epithelial-mesenchymal transition (EMT) in lung adenocarcinoma A549 cells. BPA exerted negligible effects on their properties in a wide range of concentrations (10 nM - 100 nM), whereas it considerably induced A549 invasiveness at high concentrations (10 µM). The BPA-induced EMT was illustrated by morphologic changes, E/N-cadherin switch and vimentin/Snail-1/connexin(Cx)43 up-regulation in A549 populations. It was followed by enhancement of A549 drug-resistance. Corresponding effects of BPA were observed in prostate cancer cell populations. Concomitantly, we observed increased levels and perinuclear accumulation of estrogen-related receptor gamma (ERRγ) in BPA-treated cells, its interactions with Cx43/Snail-1, and the corresponding effects of phenol red on A549 cells. Collectively, these data identify a novel, pro-metastatic Snail-1/Cx43/ERRγ signaling pathway. Its reactivity to BPA underlies the induction of cancer cells' invasiveness in the presence of high BPA concentrations in vitro. Thus, the chronic exposition of cancer cells to extrinsic and intrinsic BPA should be considered as a potential obstacle in a cancer therapy.


Assuntos
Compostos Benzidrílicos/toxicidade , Movimento Celular/efeitos dos fármacos , Conexina 43/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Estrogênios/toxicidade , Fenóis/toxicidade , Receptores de Estrogênio/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Fenolsulfonaftaleína
11.
Int J Mol Sci ; 20(15)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382537

RESUMO

Cancer cells are known to release extracellular vesicles that often promote disease development and progression. The present study investigated the protein content and glycosylation pattern of ectosomes released in vitro by a human primary uveal melanoma Mel202 cell line. Ectosomes released by Mel202 cells were isolated from conditioned media using sequential centrifugation, and a nano-LC-MS/MS approach was used to determine their protein content. Subsequently, proteins from ectosomes, the whole cell extracts, and the membrane fractions were probed with a panel of lectins using Western blotting and flow cytometry to reveal characteristic glycan structures. As many as 2527 unique proteins were identified, and many of them are known to be involved in cancer cell proliferation and altered metabolism, tumor invasion, metastasis, or drug resistance. Lectin-based studies revealed a distinct glycosylation pattern between Mel202-derived ectosomes and the parental cell membranes. Selective enrichment of ectosomal proteins with bisected complex type N-glycans and α2,6-linked sialic acids may be significant for ectosome formation and sequestration. Differences in the surface glycosylation of Mel202 cells and ectosomes supports recent findings that the budding of ectosomes occurs within strictly determined fragments of the plasma membrane, and thus ectosomes contain a unique protein and glycan composition.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Melanoma/metabolismo , Proteoma/metabolismo , Neoplasias Uveais/metabolismo , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/patologia , Micropartículas Derivadas de Células/patologia , Glicosilação , Humanos , Melanoma/patologia , Neoplasias Uveais/patologia
12.
Cancers (Basel) ; 11(1)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641904

RESUMO

Metronomic agents reduce the effective doses and adverse effects of cytostatics in cancer chemotherapy. Therefore, they can enhance the treatment efficiency of drug-resistant cancers. Cytostatic and anti-angiogenic effects of fenofibrate (FF) suggest that it can be used for the metronomic chemotherapy of drug-resistant prostate tumors. To estimate the effect of FF on the drug-resistance of prostate cancer cells, we compared the reactions of naïve and drug-resistant cells to the combined treatment with docetaxel (DCX)/mitoxantrone (MTX) and FF. FF sensitized drug-resistant DU145 and PC3 cells to DCX and MTX, as illustrated by their reduced viability and invasive potential observed in the presence of DCX/MTX and FF. The synergy of the cytostatic activities of both agents was accompanied by the inactivation of P-gp-dependent efflux, dysfunction of the microtubular system, and induction of polyploidy in DCX-resistant cells. Chemical inhibition of PPARα- and reactive oxygen species (ROS)-dependent pathways by GW6471 and N-acetyl-L-cysteine, respectively, had no effect on cell sensitivity to combined DCX/FF treatment. Instead, we observed the signs of adenosine triphosphate (ATP) deficit and autophagy in DCX/FF-treated drug-resistant cells. Furthermore, the cells that had been permanently propagated under DCX- and DCX/FF-induced stress did not acquire DCX/FF-resistance. Instead, relatively slow proliferation of DCX-resistant cells was efficiently inhibited by FF. Collectively, our observations show that FF reduces the effective doses of DCX by interfering with the drug resistance and energy metabolism of prostate cancer cells. Concomitantly, it impairs the chemotherapy-induced microevolution and expansion of DCX/FF-resistant cells. Therefore, FF can be applied as a metronomic agent to enhance the efficiency of palliative chemotherapy of prostate cancer.

13.
Microb Cell Fact ; 17(1): 177, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446013

RESUMO

BACKGROUND: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively eliminates tumor cells. However, the short biological half-life of this molecule limits its potential use in the clinic. Our aim was to construct a recombinant strain of nonpathogenic Lactococcus lactis bacteria as a vector for effective and prolonged human TRAIL production. Herein, we examined the expression and secretion conditions leading to the production of biologically active protein in vitro. RESULTS: The human soluble TRAIL-cDNA (hsTRAIL-cDNA) with optimized codons was designed to fit the codon usage pattern (codon bias) of the L. lactis host. This cDNA construct was synthesized and cloned in lactococcal plasmid secretion vector pNZ8124 under the control of the nisin-induced PnisA promoter. The pNZ8124-hsTRAIL plasmid vector was transformed into the L. lactis NZ9000 host strain cells by electroporation. Secretion of the protein occurred at the neutral pH during induction, with optimized concentration of the inducer and presence of serine proteases inhibitor. Using Western blotting and amino acid sequencing method we found that TRAIL was secreted in two forms, as visualized by the presence of two distinct molecular size bands, both deprived of the usp45 protein, the bacterial signal peptide. By the use of MTS assay we were able to prove that hsTRAIL present in supernatant from L. lactis (hsTRAIL+) broth culture was cytotoxic to human HCT116 colon cancer cells but not to normal human fibroblasts. Flow cytometry analysis revealed TRAIL-induced apoptosis of cancer cells. CONCLUSIONS: We designed recombinant L. lactis bacteria, which efficiently produce biologically active, anti-tumorigenic human TRAIL in vitro. Further studies in tumor-bearing NOD-SCID mice will reveal whether the TRAIL-secreting L. lactis bacteria can be used as a safe carrier of this protein, capable of inducing effective elimination of human colon cancer cells in vivo.


Assuntos
Lactococcus lactis/metabolismo , Recombinação Genética , Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Aprotinina/farmacologia , Células HCT116 , Humanos , Lactococcus lactis/efeitos dos fármacos , Lactococcus lactis/crescimento & desenvolvimento , Peptídeos/química , Proteólise/efeitos dos fármacos , Proteínas Recombinantes/biossíntese
14.
Sci Rep ; 8(1): 519, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323348

RESUMO

IgM is a multivalent antibody which evolved as a first line defense of adaptive immunity. It consists of heavy and light chains assembled into a complex oligomer. In mouse serum there are two forms of IgM, a full-length and a truncated one. The latter contains µ' chain, which lacks a variable region. Although µ' chain was discovered many years ago, its origin has not yet been elucidated. Our results indicate that µ' chain is generated from a full-length heavy chain by non-enzymatic cleavage of the protein backbone. The cleavage occurred specifically after Asn209 and is prevented by mutating this residue into any other amino acid. The process requires the presence of other proteins, preferentially with an acidic isoelectric point, and is facilitated by neutral or alkaline pH. This unique characteristic of the investigated phenomenon distinguishes it from other, already described, Asn-dependent protein reactions. A single IgM molecule is able to bind up to 12 epitopes via its antigen binding fragments (Fabs). The cleavage at Asn209 generates truncated IgM molecules and free Fabs, resulting in a reduced IgM valence and probably affecting IgM functionality in vivo.


Assuntos
Imunoglobulina M/metabolismo , Sequência de Aminoácidos , Animais , Células HEK293 , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/metabolismo , Imunoglobulina M/química , Imunoglobulina M/genética , Camundongos , Mutagênese Sítio-Dirigida , Domínios Proteicos
15.
Circ Res ; 122(2): 296-309, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29118058

RESUMO

RATIONALE: Extracellular vesicles (EVs) are tiny membrane-enclosed droplets released by cells through membrane budding or exocytosis. The myocardial reparative abilities of EVs derived from induced pluripotent stem cells (iPSCs) have not been directly compared with the source iPSCs. OBJECTIVE: To examine whether iPSC-derived EVs can influence the biological functions of cardiac cells in vitro and to compare the safety and efficacy of iPSC-derived EVs (iPSC-EVs) and iPSCs for cardiac repair in vivo. METHODS AND RESULTS: Murine iPSCs were generated, and EVs isolated from culture supernatants by sequential centrifugation. Atomic force microscopy, high-resolution flow cytometry, real-time quantitative RT-PCR, and mass spectrometry were used to characterize EV morphology and contents. iPSC-EVs were enriched in miRNAs and proteins with proangiogenic and cytoprotective properties. iPSC-EVs enhanced angiogenic, migratory, and antiapoptotic properties of murine cardiac endothelial cells in vitro. To compare the cardiac reparative capacities in vivo, vehicle, iPSCs, and iPSC-EVs were injected intramyocardially at 48 hours after a reperfused myocardial infarction in mice. Compared with vehicle-injected mice, both iPSC- and iPSC-EV-treated mice exhibited improved left ventricular function at 35 d after myocardial infarction, albeit iPSC-EVs rendered greater improvement. iPSC-EV injection also resulted in reduction in left ventricular mass and superior perfusion in the infarct zone. Both iPSCs and iPSC-EVs preserved viable myocardium in the infarct zone, whereas reduction in apoptosis was significant with iPSC-EVs. iPSC injection resulted in teratoma formation, whereas iPSC-EV injection was safe. CONCLUSIONS: iPSC-derived EVs impart cytoprotective properties to cardiac cells in vitro and induce superior cardiac repair in vivo with regard to left ventricular function, vascularization, and amelioration of apoptosis and hypertrophy. Because of their acellular nature, iPSC-EVs represent a safer alternative for potential therapeutic applications in patients with ischemic myocardial damage.


Assuntos
Vesículas Extracelulares/fisiologia , Vesículas Extracelulares/transplante , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Traumatismo por Reperfusão Miocárdica/terapia , Animais , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/transplante , Resultado do Tratamento
16.
J Mol Med (Berl) ; 95(2): 205-220, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27638341

RESUMO

Growing evidence indicates that intracellular signaling mediated by extracellular vesicles (EVs) released by stem cells plays a considerable role in triggering the regenerative program upon transplantation. EVs from umbilical cord mesenchymal stem cells (UC-MSC-EVs) have been shown to enhance tissue repair in animal models. However, translating such results into clinical practice requires optimized EV collection procedures devoid of animal-originating agents. Thus, in this study, we analyzed the influence of xeno-free expansion media on biological properties of UC-MSCs and UC-MSC-EVs for future applications in cardiac repair in humans. Our results show that proliferation, differentiation, phenotype stability, and cytokine secretion by UC-MSCs vary depending on the type of xeno-free media. Importantly, we found distinct molecular and functional properties of xeno-free UC-MSC-EVs including enhanced cardiomyogenic and angiogenic potential impacting on target cells, which may be explained by elevated concentration of several pro-cardiogenic and pro-angiogenic microRNA (miRNAs) present in the EVs. Our data also suggest predominantly low immunogenic capacity of certain xeno-free UC-MSC-EVs reflected by their inhibitory effect on proliferation of immune cells in vitro. Summarizing, conscious selection of cell culture conditions is required to harvest UC-MSC-EVs with the optimal desired properties including enhanced cardiac and angiogenic capacity, suitable for tissue regeneration. KEY MESSAGE: Type of xeno-free media influences biological properties of UC-MSCs in vitro. Certain xeno-free media promote proliferation and differentiation ability of UC-MSCs. EVs collected from xeno-free cultures of UC-MSCs are biologically active. Xeno-free UC-MSC-EVs enhance cardiac and angiogenic potential of target cells. Type of xeno-free media determines immunomodulatory effects mediated by UC-MSC-EVs.


Assuntos
Meios de Cultura Livres de Soro/farmacologia , Vesículas Extracelulares/efeitos dos fármacos , Coração/fisiologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Regeneração , Cordão Umbilical/citologia , Trifosfato de Adenosina/metabolismo , Animais , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Meios de Cultura Livres de Soro/química , Citocinas/metabolismo , Vesículas Extracelulares/fisiologia , Humanos , Células-Tronco Mesenquimais/fisiologia , MicroRNAs/genética
17.
Biochim Biophys Acta Mol Cell Res ; 1864(2): 267-279, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27864076

RESUMO

Bone marrow-derived cells are thought to participate and enhance the healing process contributing to skin cells or releasing regulatory cytokines. Directional cell migration in a weak direct current electric field (DC-EF), known as electrotaxis, may be a way of cell recruitment to the wound site. Here we examined the influence of electric field on bone marrow adherent cells (BMACs) and its potential role as a factor attracting mesenchymal stem cells to cutaneous wounds. We observed that in an external EF, BMAC movement was accelerated and highly directed with distinction of two cell populations migrating toward opposite poles: mesenchymal stem cells migrated toward the cathode, whereas macrophages toward the anode. Analysis of intracellular pathways revealed that macrophage electrotaxis mostly depended on Rho family small GTPases and calcium ions, but interruption of PI3K and Arp2/3 had the most pronounced effect on electrotaxis of MSCs. However, in all cases we observed only a partial decrease in directionality of cell movement after inhibition of certain proteins. Additionally, although we noticed the accumulation of EGFR at the cathodal side of MSCs, it was not involved in electrotaxis. Moreover, the cell reaction to EF was very dynamic with first symptoms occurring within <1min. In conclusion, the physiological DC-EF may act as a factor positioning bone marrow cells within a wound bed and the opposite direction of MSC and macrophage movement did not result either from utilizing different signalling or redistribution of investigated cell surface receptors.


Assuntos
Células da Medula Óssea/citologia , Eletricidade , Células-Tronco Mesenquimais/citologia , Pele/lesões , Cicatrização , Animais , Células da Medula Óssea/metabolismo , Cálcio/metabolismo , Movimento Celular , Receptores ErbB/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
18.
PLoS One ; 11(8): e0160536, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27501389

RESUMO

Ageing and mutations of transthyretin (TTR), the thyroid hormones and retinol transporting protein lead to amyloidosis by destabilizing the structure of TTR. Because protein structure is regulated through posttranslational modifications, we investigated the Small Ubiquitin-like Modifier (SUMO)ylation of TTR. We chose the widely used Ubc9 fusion-directed SUMOylation system, which is based on a fusion of the SUMOylation substrate of interest with Ubc9, a sole SUMO conjugating enzyme. Surprisingly, despite our presumptions, we found that Ubc9 fused to TTR was SUMOylated at a unique set of lysine residues. Three unknown SUMOylation sites of Ubc9-K154, K18 and K65-were revealed by mass spectrometry (MS). The previously reported SUMOylation at K49 of Ubc9 was also observed. SUMOylation of the lysine residues of TTR fused to Ubc9 was hardly detectable. However, non-fused TTR was SUMOylated via trans-SUMOylation by Ubc9 fused to TTR. Interestingly, mutating the catalytic residue of Ubc9 fused to TTR did not result in complete loss of the SUMOylation signal, suggesting that Ubc9 linked to TTR is directly cross-SUMOylated by the SUMO-activating enzyme E1. Ubc9, TTR or fusion proteins composed of TTR and Ubc9 specifically affected the global SUMOylation of cellular proteins. TTR or Ubc9 alone increased global SUMOylation, whereas concomitant presence of TTR and Ubc9 did not further increase the amount of high-molecular weight (HMW) SUMO conjugates. Our data suggest that TTR may influence the SUMOylation of Ubc9, thereby altering signalling pathways in the cell.


Assuntos
Pré-Albumina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Células HEK293 , Humanos , Lisina/metabolismo , Mutagênese Sítio-Dirigida , Pré-Albumina/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sumoilação , Enzimas de Conjugação de Ubiquitina/genética
19.
Acta Biochim Pol ; 63(3): 427-36, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27474405

RESUMO

Candida tropicalis is one of the most frequent causes of serious disseminated candidiasis in human patients infected by non-albicans Candida species, but still relatively little is known about its virulence mechanisms. In our current study, the interactions between the cell surface of this species and a multifunctional human protein - high-molecular-mass kininogen (HK), an important component of the plasma contact system involved in the development of the inflammatory state - were characterized at the molecular level. The quick release of biologically active kinins from candidal cell wall-adsorbed HK was presented and the HK-binding ability was assigned to several cell wall-associated proteins. The predicted hyphally regulated cell wall protein (Hyr) and some housekeeping enzymes exposed at the cell surface (known as "moonlighting proteins") were found to be the major HK binders. Accordingly, after purification of selected proteins, the dissociation constants of the complexes of HK with Hyr, enolase, and phosphoglycerate mutase were determined using surface plasmon resonance measurements, yielding the values of 2.20 × 10(-7) M, 1.42 × 10(-7) M, and 5.81 × 10(-7) M, respectively. Therefore, in this work, for the first time, the interactions between C. tropicalis cell wall proteins and HK were characterized in molecular terms. Our findings may be useful for designing more effective prevention and treatment approaches against infections caused by this dangerous fungal pathogen.


Assuntos
Candida tropicalis/química , Proteínas Fúngicas/química , Cininogênios/química , Parede Celular/química , Proteínas Fúngicas/isolamento & purificação , Humanos , Cinética , Peso Molecular , Ligação Proteica , Mapeamento de Interação de Proteínas
20.
PLoS One ; 11(2): e0149133, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26863616

RESUMO

The endogenous electric field (EF) may provide an important signal for directional cell migration during wound healing, embryonic development and cancer metastasis but the mechanism of cell electrotaxis is poorly understood. Additionally, there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement-specifically blebbing vs. lamellipodial migration. In the current study we constructed a unique experimental model which allowed for the investigation of electrotactic movement of cells of the same origin but representing different modes of cell migration: weakly adherent, spontaneously blebbing (BC) and lamellipodia forming (LC) WC256 cells. We report that both BC and LC sublines show robust cathodal migration in a physiological EF (1-3 V/cm). The directionality of cell movement was completely reversible upon reversing the field polarity. However, the full reversal of cell direction after the change of EF polarity was much faster in the case of BC (10 minutes) than LC cells (30 minutes). We also investigated the distinct requirements for Rac, Cdc42 and Rho pathways and intracellular Ca2+ in electrotaxis of WC256 sublines forming different types of cell protrusions. It was found that Rac1 is required for directional movement of LC to a much greater extent than for BC, but Cdc42 and RhoA are more crucial for BC than for LC cells. The inhibition of ROCK did not affect electrotaxis of LC in contrast to BC cells. The results also showed that intracellular Ca2+ is essential only for the electrotactic reaction of BC cells. Moreover, inhibition of MLCK and myosin II did not affect the electrotaxis of LC in contrast to BC cells. In conclusion, our results revealed that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells, however directional migration is mediated by different signalling pathways.


Assuntos
Carcinoma 256 de Walker/metabolismo , Movimento Celular , Pseudópodes/metabolismo , Actinas/metabolismo , Animais , Cálcio/química , Membrana Celular/metabolismo , Eletroquímica , Campos Eletromagnéticos , Microscopia Eletrônica de Varredura , Metástase Neoplásica , Fenótipo , Plasmídeos/metabolismo , Proteoma , Ratos , Cicatrização , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA