Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
2.
Transplant Cell Ther ; 30(3): 255-267, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37913908

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains a key treatment option for hematologic malignancies (HMs), although it carries significant risks. Up to 30% of patients relapse after allo-HSCT, of which up to 2% to 5% are donor-derived malignancies (DDMs). DDMs can arise from a germline genetic predisposition allele or clonal hematopoiesis (CH) in the donor. Increasingly, genetic testing reveals that patient and donor genetic factors contribute to the development of DDM and other allo-HSCT complications. Deleterious germline variants in CEBPA, DDX41, GATA2, and RUNX1 predispose to inferior allo-HSCT outcomes. DDM has been linked to donor-acquired somatic CH variants in DNMT3A, ASXL1, JAK2, and IDH2, often with additional new variants. We do not yet have evidence to standardize donor genetic sequencing prior to allo-HSCT. The presence of hereditary HM disorders should be considered in patients with myeloid malignancies and their related donors, and screening of unrelated donors should include family and personal history of cytopenia and HMs. Excellent multidisciplinary care is critical to ensure efficient timelines for screening and necessary discussions among medical oncologists, genetic counselors, recipients, and potential donors. After allo-HSCT, HM relapse monitoring with genetic testing effectively results in genetic sequencing of the donor, as the transplanted hematopoietic system is donor-derived, which presents ethical challenges for disclosure to patients and donors. We encourage consideration of the recent National Marrow Donor Program policy that allows donors to opt-in for notification about detection of their genetic variants after allo-HSCT, with appropriate genetic counseling when feasible. We look forward to prospective investigation of the impact of germline and acquired somatic genetic variants on hematopoietic stem cell mobilization/engraftment, graft-versus-host disease, and DDM to facilitate improved outcomes through knowledge of genetic risk.


Assuntos
Amidas , Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Sulfonas , Humanos , Estudos Prospectivos , Transplante Homólogo/efeitos adversos , Recidiva Local de Neoplasia/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Doadores não Relacionados , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Morbidade , Recidiva
3.
Blood Adv ; 7(17): 4950-4961, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37339483

RESUMO

The multikinase inhibitor sorafenib improves event-free survival (EFS) when used with 7 + 3 in adults with newly-diagnosed acute myeloid leukemia (AML), irrespective of the FLT3-mutation status. Here, we evaluated adding sorafenib to cladribine, high-dose cytarabine, granulocyte colony-stimulating factor, and mitoxantrone (CLAG-M) in a phase 1/2 trial of 81 adults aged ≤60 years with newly diagnosed AML. Forty-six patients were treated in phase 1 with escalating doses of sorafenib and mitoxantrone. No maximum tolerated dose was reached, and a regimen including mitoxantrone 18 mg/m2 per day and sorafenib 400 mg twice daily was declared the recommended phase 2 dose (RP2D). Among 41 patients treated at RP2D, a measurable residual disease-negative complete remission (MRD- CR) rate of 83% was obtained. Four-week mortality was 2%. One-year overall survival (OS) and EFS were 80% and 76%, without differences in MRD- CR rates, OS, or EFS between patients with or without FLT3-mutated disease. Comparing outcomes using CLAG-M/sorafenib with those of a matched cohort of 76 patients treated with CLAG-M alone, multivariable-adjusted survival estimates were improved for 41 patients receiving CLAG-M/sorafenib at RP2D (OS: hazard ratio,0.24 [95% confidence interval, 0.07-0.82]; P = .023; EFS: hazard ratio, 0.16 [95% confidence interval, 0.05-0.53]; P = .003). Benefit was limited to patients with intermediate-risk disease (univariate analysis: P = .01 for OS; P = .02 for EFS). These data suggest that CLAG-M/sorafenib is safe and improves OS and EFS relative to CLAG-M alone, with benefits primarily in patients with intermediate-risk disease. The trial was registered at www.clinicaltrials.gov as #NCT02728050.


Assuntos
Leucemia Mieloide Aguda , Mitoxantrona , Adulto , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Cladribina/uso terapêutico , Citarabina/uso terapêutico , Fator Estimulador de Colônias de Granulócitos , Leucemia Mieloide Aguda/diagnóstico , Mitoxantrona/uso terapêutico , Sorafenibe/uso terapêutico , Pessoa de Meia-Idade
4.
J Am Acad Dermatol ; 89(6): 1227-1237, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36041558

RESUMO

Erythropoietic protoporphyria and X-linked protoporphyria are rare genetic photodermatoses. Limited expertise with these disorders among physicians leads to diagnostic delays. Here, we present evidence-based consensus guidelines for the diagnosis, monitoring, and management of erythropoietic protoporphyria and X-linked protoporphyria. A systematic literature review was conducted, and reviewed among subcommittees of experts, divided by topic. Consensus on guidelines was reached within each subcommittee and then among all members of the committee. The appropriate biochemical and genetic testing to establish the diagnosis is reviewed in addition to the interpretation of results. Prevention of symptoms, management of acute phototoxicity, and pharmacologic and nonpharmacologic treatment options are discussed. The importance of ongoing monitoring for liver disease, iron deficiency, and vitamin D deficiency is discussed with management guidance. Finally, management of pregnancy and surgery and the safety of other therapies are summarized. We emphasize that these are multisystemic disorders that require longitudinal monitoring. These guidelines provide a structure for evidence-based diagnosis and management for practicing physicians. Early diagnosis and management of these disorders are essential, particularly given the availability of new and emerging therapies.


Assuntos
Dermatite Fototóxica , Doenças Genéticas Ligadas ao Cromossomo X , Hepatopatias , Guias de Prática Clínica como Assunto , Protoporfiria Eritropoética , Humanos , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Protoporfiria Eritropoética/diagnóstico , Protoporfiria Eritropoética/genética , Protoporfiria Eritropoética/terapia
5.
Cancers (Basel) ; 14(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35740603

RESUMO

Gemtuzumab ozogamicin (GO) improves outcomes when added to intensive AML chemotherapy. A meta-analysis suggested the greatest benefit when combining fractionated doses of GO (GO3) with 7 + 3. To test whether GO3 can be safely used with high intensity chemotherapy, we conducted a phase 1/2 study of cladribine, high-dose cytarabine, G-CSF, and dose-escalated mitoxantrone (CLAG-M) in adults with newly diagnosed AML or other high-grade myeloid neoplasm (NCT03531918). Sixty-six patients with a median age of 65 (range: 19-80) years were enrolled. Cohorts of six and twelve patients were treated in phase 1 with one dose of GO or three doses of GO (GO3) at 3 mg/m2 per dose. Since a maximum-tolerated dose was not reached, the recommended phase 2 dose (RP2D) was declared to be GO3. At RP2D, 52/60 (87%) patients achieved a complete remission (CR)/CR with incomplete hematologic recovery (CRi), 45/52 (87%) without flow cytometric measurable residual disease (MRD). Eight-week mortality was 0%. Six- and twelve-month event-free survival (EFS) were 73% and 58%; among favorable-risk patients, these estimates were 100% and 95%. Compared to 186 medically matched adults treated with CLAG-M alone, CLAG-M/GO3 was associated with better survival in patients with favorable-risk disease (EFS: p = 0.007; OS: p = 0.030). These data indicate that CLAG-M/GO3 is safe and leads to superior outcomes than CLAG-M alone in favorable-risk AML/high-grade myeloid neoplasm.

6.
Cell Stem Cell ; 29(4): 577-592.e8, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35278369

RESUMO

Abnormal nuclear morphology is a hallmark of malignant cells widely used in cancer diagnosis. Pelger-Huët anomaly (PHA) is a common abnormality of neutrophil nuclear morphology of unknown molecular etiology in myeloid neoplasms (MNs). We show that loss of nuclear lamin B1 (LMNB1) encoded on chromosome 5q, which is frequently deleted in MNs, induces defects in nuclear morphology and human hematopoietic stem cell (HSC) function associated with malignancy. LMNB1 deficiency alters genome organization inducing in vitro and in vivo expansion of HSCs, myeloid-biased differentiation with impaired lymphoid commitment, and genome instability due to defective DNA damage repair. Nuclear dysmorphology of neutrophils in patients with MNs is associated with 5q deletions spanning the LMNB1 locus, and lamin B1 loss is both necessary and sufficient to cause PHA in normal and 5q-deleted neutrophils. LMNB1 loss thus causes acquired PHA and links abnormal nuclear morphology with HSCs and progenitor cell fate determination via genome organization.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Anomalia de Pelger-Huët , Núcleo Celular , Células-Tronco Hematopoéticas/patologia , Humanos , Lamina Tipo B/genética , Anomalia de Pelger-Huët/genética , Anomalia de Pelger-Huët/patologia
8.
Blood Adv ; 6(1): 297-306, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34758064

RESUMO

Shwachman-Diamond syndrome (SDS) is an inherited bone marrow failure syndrome with leukemia predisposition. An understanding of the hematologic complications of SDS with age could guide clinical management, but data are limited for this rare disease. We conducted a cohort study of 153 subjects from 143 families with confirmed biallelic SBDS mutations enrolled on the North American Shwachman Diamond Registry or Bone Marrow Failure Registry. The SBDS c.258 + 2T>C variant was present in all but 1 patient. To evaluate the association between blood counts and age, 2146 blood counts were analyzed for 119 subjects. Absolute neutrophil counts were positively associated with age (P < .0001). Hemoglobin was also positively associated with age up to 18 years (P < .0001), but the association was negative thereafter (P = .0079). Platelet counts and marrow cellularity were negatively associated with age (P < .0001). Marrow cellularity did not correlate with blood counts. Severe marrow failure necessitating transplant developed in 8 subjects at a median age of 1.7 years (range, 0.4-39.5), with 7 of 8 requiring transplant prior to age 8 years. Twenty-six subjects (17%) developed a myeloid malignancy (16 myelodysplasia and 10 acute myeloid leukemia) at a median age of 12.3 years (range, 0.5-45.0) and 28.4 years (range, 14.4-47.3), respectively. A lymphoid malignancy developed in 1 patient at the age of 16.9 years. Hematologic complications were the major cause of mortality (17/20 deaths; 85%). These data inform surveillance of hematologic complications in SDS.


Assuntos
Doenças da Medula Óssea , Insuficiência Pancreática Exócrina , Doenças Hematológicas , Adolescente , Adulto , Doenças da Medula Óssea/complicações , Doenças da Medula Óssea/genética , Doenças da Medula Óssea/patologia , Criança , Pré-Escolar , Estudos de Coortes , Insuficiência Pancreática Exócrina/complicações , Insuficiência Pancreática Exócrina/genética , Doenças Hematológicas/complicações , Humanos , Lactente , Pessoa de Meia-Idade , Síndrome de Shwachman-Diamond , Adulto Jovem
9.
Cancer ; 128(7): 1411-1417, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34931301

RESUMO

BACKGROUND: Potential involvement of the central nervous system (CNS) by acute lymphoblastic leukemia is typically evaluated by a conventional cytospin (CC) of cerebrospinal fluid (CSF). Multiparameter flow cytometry (MFC) is generally more sensitive and specific than morphology, but data to guide its use versus CC are limited. METHODS: This study identified 92 patients who had MFC performed on their initial CSF specimen and received at least 4 cycles of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone alternating with methotrexate and cytarabine (hyperCVAD) as their initial treatment. RESULTS: Eighteen (20%) were CSF+ by MFC at the baseline, and only 6 of these patients were positive by CC. In contrast, 0 of 51 patients who were negative by MFC and had CC available were positive by CC. Despite the receipt of significantly more intra-CSF chemotherapy (P < .001), the cumulative incidence of CNS relapse by MFC was 22% among CSF+ patients versus 5% among those who were CSF- (P = .044). No such association was observed between CNS relapse and CC results (P = .42). None of the 74 CSF- patients became CSF+ during their initial treatment despite being tested a median of 5 times (range, 2-10). CSF positivity by MFC was the factor most strongly associated with CNS relapse in a series of univariate Cox models (hazard ratio, 3.7; P = .067). The initial CSF status by MFC had no significant impact on overall or event-free survival. CONCLUSIONS: MFC of CSF is superior to CC of CSF in identifying adults at high risk for CNS relapse after treatment with hyperCVAD. Surveillance of CSF by MFC has limited utility.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Sistema Nervoso Central , Citarabina , Citometria de Fluxo , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Recidiva
11.
Hum Mutat ; 42(11): 1367-1383, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34298585

RESUMO

The congenital sideroblastic anemias (CSAs) are a heterogeneous group of inherited disorders of erythropoiesis characterized by pathologic deposits of iron in the mitochondria of developing erythroblasts. Mutations in the mitochondrial glycine carrier SLC25A38 cause the most common recessive form of CSA. Nonetheless, the disease is still rare, there being fewer than 70 reported families. Here we describe the clinical phenotype and genotypes of 31 individuals from 24 families, including 11 novel mutations. We also review the spectrum of reported mutations and genotypes associated with the disease, describe the unique localization of missense mutations in transmembrane domains and account for the presence of several alleles in different populations.


Assuntos
Anemia Sideroblástica/congênito , Genótipo , Proteínas de Transporte da Membrana Mitocondrial/genética , Mutação , Fenótipo , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
12.
Blood Adv ; 5(3): 687-699, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33560381

RESUMO

RUNX1 familial platelet disorder (RUNX1-FPD) is an autosomal dominant disorder caused by a monoallelic mutation of RUNX1, initially resulting in approximately half-normal RUNX1 activity. Clinical features include thrombocytopenia, platelet functional defects, and a predisposition to leukemia. RUNX1 is rapidly degraded through the ubiquitin-proteasome pathway. Moreover, it may autoregulate its expression. A predicted kinetic property of autoregulatory circuits is that transient perturbations of steady-state levels result in continued maintenance of expression at adjusted levels, even after inhibitors of degradation or inducers of transcription are withdrawn, suggesting that transient inhibition of RUNX1 degradation may have prolonged effects. We hypothesized that pharmacological inhibition of RUNX1 protein degradation could normalize RUNX1 protein levels, restore the number of platelets and their function, and potentially delay or prevent malignant transformation. In this study, we evaluated cell lines, induced pluripotent stem cells derived from patients with RUNX1-FPD, RUNX1-FPD primary bone marrow cells, and acute myeloid leukemia blood cells from patients with RUNX1 mutations. The results showed that, in some circumstances, transient expression of exogenous RUNX1 or inhibition of steps leading to RUNX1 ubiquitylation and proteasomal degradation restored RUNX1 levels, thereby advancing megakaryocytic differentiation in vitro. Thus, drugs retarding RUNX1 proteolytic degradation may represent a therapeutic avenue for treating bleeding complications and preventing leukemia in RUNX1-FPD.


Assuntos
Transtornos Herdados da Coagulação Sanguínea , Transtornos Plaquetários , Leucemia Mieloide Aguda , Transtornos Plaquetários/genética , Plaquetas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Humanos
14.
Blood ; 134(2): 186-198, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31010849

RESUMO

Myeloid neoplasms, including myelodysplastic syndromes (MDS), are genetically heterogeneous disorders driven by clonal acquisition of somatic mutations in hematopoietic stem and progenitor cells (HPCs). The order of premalignant mutations and their impact on HPC self-renewal and differentiation remain poorly understood. We show that episomal reprogramming of MDS patient samples generates induced pluripotent stem cells from single premalignant cells with a partial complement of mutations, directly informing the temporal order of mutations in the individual patient. Reprogramming preferentially captured early subclones with fewer mutations, which were rare among single patient cells. To evaluate the functional impact of clonal evolution in individual patients, we differentiated isogenic MDS induced pluripotent stem cells harboring up to 4 successive clonal abnormalities recapitulating a progressive decrease in hematopoietic differentiation potential. SF3B1, in concert with epigenetic mutations, perturbed mitochondrial function leading to accumulation of damaged mitochondria during disease progression, resulting in apoptosis and ineffective erythropoiesis. Reprogramming also informed the order of premalignant mutations in patients with complex karyotype and identified 5q deletion as an early cytogenetic anomaly. The loss of chromosome 5q cooperated with TP53 mutations to perturb genome stability, promoting acquisition of structural and karyotypic abnormalities. Reprogramming thus enables molecular and functional interrogation of preleukemic clonal evolution, identifying mitochondrial function and chromosome stability as key pathways affected by acquisition of somatic mutations in MDS.


Assuntos
Reprogramação Celular , Evolução Clonal/genética , Células-Tronco Hematopoéticas/patologia , Síndromes Mielodisplásicas/genética , Células-Tronco Pluripotentes/patologia , Humanos
15.
Blood ; 133(5): 457-469, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30530752

RESUMO

Erythropoiesis is the complex, dynamic, and tightly regulated process that generates all mature red blood cells. To understand this process, we mapped the developmental trajectories of progenitors from wild-type, erythropoietin-treated, and Flvcr1-deleted mice at single-cell resolution. Importantly, we linked the quantity of each cell's surface proteins to its total transcriptome, which is a novel method. Deletion of Flvcr1 results in high levels of intracellular heme, allowing us to identify heme-regulated circuitry. Our studies demonstrate that in early erythroid cells (CD71+Ter119neg-lo), heme increases ribosomal protein transcripts, suggesting that heme, in addition to upregulating globin transcription and translation, guarantees ample ribosomes for globin synthesis. In later erythroid cells (CD71+Ter119lo-hi), heme decreases GATA1, GATA1-target gene, and mitotic spindle gene expression. These changes occur quickly. For example, in confirmatory studies using human marrow erythroid cells, ribosomal protein transcripts and proteins increase, and GATA1 transcript and protein decrease, within 15 to 30 minutes of amplifying endogenous heme synthesis with aminolevulinic acid. Because GATA1 initiates heme synthesis, GATA1 and heme together direct red cell maturation, and heme stops GATA1 synthesis, our observations reveal a GATA1-heme autoregulatory loop and implicate GATA1 and heme as the comaster regulators of the normal erythroid differentiation program. In addition, as excessive heme could amplify ribosomal protein imbalance, prematurely lower GATA1, and impede mitosis, these data may help explain the ineffective (early termination of) erythropoiesis in Diamond Blackfan anemia and del(5q) myelodysplasia, disorders with excessive heme in colony-forming unit-erythroid/proerythroblasts, explain why these anemias are macrocytic, and show why children with GATA1 mutations have DBA-like clinical phenotypes.


Assuntos
Células Precursoras Eritroides/citologia , Eritropoese , Fator de Transcrição GATA1/metabolismo , Heme/metabolismo , Adulto , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Animais , Vias Biossintéticas , Células Cultivadas , Células Precursoras Eritroides/metabolismo , Fator de Transcrição GATA1/genética , Deleção de Genes , Regulação da Expressão Gênica , Humanos , Proteínas de Membrana Transportadoras/genética , Camundongos , Receptores Virais/genética , Análise de Célula Única , Transcriptoma
16.
Biol Blood Marrow Transplant ; 22(11): 2100-2103, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27497531

RESUMO

Analysis of the clinical characteristics of hematopoietic stem cell transplant (HSCT) donors has proven beneficial for identifying cases of heritable hematopoietic disorders. This study examines poor peripheral blood hematopoietic stem cell mobilization after granulocyte colony-stimulating factor administration among 328 donors as a potential marker for suspected familial predisposition to myeloid malignancies. Here, we present data comparing the clinical characteristics of poor-mobilizing versus nonpoor-mobilizing donors and the results of panel-based sequencing of hematopoietic genes in poor-mobilizing donors. From this analysis, we identified a novel case of a donor-derived myelodysplastic syndrome in an HSCT recipient that is consistent with clonal evolution of TET2-mutated clonal hematopoiesis of indeterminate potential (CHIP) within the donor. This study demonstrates the potential risk of using hematopoietic stem cells from a donor with CHIP and raises the question of whether there should be increased screening measures to identify such donors.


Assuntos
Doadores de Sangue , Mobilização de Células-Tronco Hematopoéticas/normas , Neoplasias/genética , Adolescente , Adulto , Idoso , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Dioxigenases , Feminino , Predisposição Genética para Doença , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/genética , Neoplasias/etiologia , Linhagem , Proteínas Proto-Oncogênicas/genética , Adulto Jovem
17.
Haematologica ; 101(11): 1343-1350, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27418648

RESUMO

The clinical and histopathological distinctions between inherited versus acquired bone marrow failure and myelodysplastic syndromes are challenging. The identification of inherited bone marrow failure/myelodysplastic syndromes is critical to inform appropriate clinical management. To investigate whether a subset of pediatric and young adults undergoing transplant for aplastic anemia or myelodysplastic syndrome have germline mutations in bone marrow failure/myelodysplastic syndrome genes, we performed a targeted genetic screen of samples obtained between 1990-2012 from children and young adults with aplastic anemia or myelodysplastic syndrome transplanted at the Fred Hutchinson Cancer Research Center. Mutations in inherited bone marrow failure/myelodysplastic syndrome genes were found in 5.1% (5/98) of aplastic anemia patients and 13.6% (15/110) of myelodysplastic syndrome patients. While the majority of mutations were constitutional, a RUNX1 mutation present in the peripheral blood at a 51% variant allele fraction was confirmed to be somatically acquired in one myelodysplastic syndrome patient. This highlights the importance of distinguishing germline versus somatic mutations by sequencing DNA from a second tissue or from parents. Pathological mutations were present in DKC1, MPL, and TP53 among the aplastic anemia cohort, and in FANCA, GATA2, MPL, RTEL1, RUNX1, SBDS, TERT, TINF2, and TP53 among the myelodysplastic syndrome cohort. Family history or physical examination failed to reliably predict the presence of germline mutations. This study shows that while any single specific bone marrow failure/myelodysplastic syndrome genetic disorder is rare, screening for these disorders in aggregate identifies a significant subset of patients with inherited bone marrow failure/myelodysplastic syndrome.


Assuntos
Anemia Aplástica/genética , Mutação em Linhagem Germinativa , Síndromes Mielodisplásicas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Família , Feminino , Testes Genéticos , Humanos , Lactente , Masculino , Mutação , Análise de Sequência de DNA , Adulto Jovem
18.
Am J Hum Genet ; 98(6): 1146-1158, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27259050

RESUMO

Ataxia-pancytopenia (AP) syndrome is characterized by cerebellar ataxia, variable hematologic cytopenias, and predisposition to marrow failure and myeloid leukemia, sometimes associated with monosomy 7. Here, in the four-generation family UW-AP, linkage analysis revealed four regions that provided the maximal LOD scores possible, one of which was in a commonly microdeleted chromosome 7q region. Exome sequencing identified a missense mutation (c.2640C>A, p.His880Gln) in the sterile alpha motif domain containing 9-like gene (SAMD9L) that completely cosegregated with disease. By targeted sequencing of SAMD9L, we subsequently identified a different missense mutation (c.3587G>C, p.Cys1196Ser) in affected members of the first described family with AP syndrome, Li-AP. Neither variant is reported in the public databases, both affect highly conserved amino acid residues, and both are predicted to be damaging. With time in culture, lymphoblastic cell lines (LCLs) from two affected individuals in family UW-AP exhibited copy-neutral loss of heterozygosity for large portions of the long arm of chromosome 7, resulting in retention of only the wild-type SAMD9L allele. Newly established LCLs from both individuals demonstrated the same phenomenon. In addition, targeted capture and sequencing of SAMD9L in uncultured blood DNA from both individuals showed bias toward the wild-type allele. These observations indicate in vivo hematopoietic mosaicism. The hematopoietic cytopenias that characterize AP syndrome and the selective advantage for clones that have lost the mutant allele support the postulated role of SAMD9L in the regulation of cell proliferation. Furthermore, we show that AP syndrome is distinct from the dyskeratoses congenita telomeropathies, with which it shares some clinical characteristics.


Assuntos
Ataxia Cerebelar/genética , Aberrações Cromossômicas , Mutação de Sentido Incorreto/genética , Pancitopenia/genética , Proteínas/genética , Adolescente , Adulto , Ataxia Cerebelar/patologia , Criança , Cromossomos Humanos Par 7/genética , Exoma/genética , Feminino , Ligação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Perda de Heterozigosidade , Masculino , Pessoa de Meia-Idade , Pancitopenia/patologia , Linhagem , Proteínas Supressoras de Tumor/genética , Adulto Jovem
19.
Sci Transl Med ; 8(338): 338ra67, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27169803

RESUMO

Diamond Blackfan anemia (DBA) and myelodysplastic syndrome (MDS) with isolated del(5q) are severe macrocytic anemias; although both are associated with impaired ribosome assembly, why the anemia occurs is not known. We cultured marrow cells from DBA (n = 3) and del(5q) MDS (n = 6) patients and determined how heme (a toxic chemical) and globin (a protein) are coordinated. We show that globin translation initiates slowly, whereas heme synthesis proceeds normally. This results in insufficient globin protein, excess heme and excess reactive oxygen species in early erythroid precursors, and CFU-E (colony-forming unit-erythroid)/proerythroblast cell death. The cells that can more rapidly and effectively export heme or can slow heme synthesis preferentially survive and appropriately mature. Consistent with these observations, treatment with 10 µM succinylacetone, a specific inhibitor of heme synthesis, improved the erythroid cell output of DBA and del(5q) MDS marrow cultures by 68 to 95% (P = 0.03 to 0.05), whereas the erythroid cell output of concurrent control marrow cultures decreased by 4 to 13%. Our studies demonstrate that erythropoiesis fails when heme exceeds globin. Our data further suggest that therapies that decrease heme synthesis (or facilitate heme export) could improve the red blood cell production of persons with DBA, del(5q) MDS, and perhaps other macrocytic anemias.


Assuntos
Anemia de Diamond-Blackfan/metabolismo , Anemia Macrocítica/metabolismo , Anemia/metabolismo , Globinas/metabolismo , Heme/metabolismo , Síndromes Mielodisplásicas/metabolismo , Adulto , Células Eritroides/metabolismo , Eritropoese/fisiologia , Feminino , Citometria de Fluxo , Humanos , Espécies Reativas de Oxigênio/metabolismo
20.
Exp Hematol ; 43(6): 469-78.e6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25782630

RESUMO

Hepcidin is the key regulator of iron absorption and recycling, and its expression is suppressed by red blood cell production. When erythropoiesis is expanded, hepcidin expression decreases. To gain insight into the stage of erythroid differentiation at which the regulation might originate, we measured serum hepcidin levels in archived pure red cell aplasia samples from patients whose block in erythroid differentiation was well defined by hematopoietic colony assays and marrow morphologic review. Hepcidin values are high or high normal in pure red cell aplasia patients in whom erythropoiesis is inhibited prior to the proerythroblast stage, but are suppressed in patients with excess proerythroblasts and few later erythroid cells. These data suggest that the suppressive effect of erythropoietic activity on hepcidin expression can arise from proerythroblasts, the stage at which transferrin receptor 1 expression peaks, prompting the hypothesis that transferrin receptor 1 expression on erythroid precursors is a proximal mediator of the erythroid regulator of hepcidin expression. Our characterization of erythropoiesis, iron status, and hepcidin expression in mice with global or hematopoietic cell-specific haploinsufficiency of transferrin receptor 1 provides initial supporting data for this model. The regulation appears independent of erythroferrone and growth differentiation factor 15, supporting the concept that several mechanisms signal iron need in response to an expanded erythron.


Assuntos
Células da Medula Óssea/metabolismo , Hepcidinas/antagonistas & inibidores , Fígado/metabolismo , Receptores da Transferrina/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA