Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2486, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509072

RESUMO

Protein synthesis terminates when a stop codon enters the ribosome's A-site. Although termination is efficient, stop codon readthrough can occur when a near-cognate tRNA outcompetes release factors during decoding. Seeking to understand readthrough regulation we used a machine learning approach to analyze readthrough efficiency data from published HEK293T ribosome profiling experiments and compared it to comparable yeast experiments. We obtained evidence for the conservation of identities of the stop codon, its context, and 3'-UTR length (when termination is compromised), but not the P-site codon, suggesting a P-site tRNA role in readthrough regulation. Models trained on data from cells treated with the readthrough-promoting drug, G418, accurately predicted readthrough of premature termination codons arising from CFTR nonsense alleles that cause cystic fibrosis. This predictive ability has the potential to aid development of nonsense suppression therapies by predicting a patient's likelihood of improvement in response to drugs given their nonsense mutation sequence context.


Assuntos
Códon sem Sentido , Biossíntese de Proteínas , Humanos , Códon de Terminação/genética , Códon sem Sentido/genética , Células HEK293 , Biossíntese de Proteínas/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo
2.
Clin Trials ; 21(1): 51-66, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37937606

RESUMO

Numerous successful gene-targeted therapies are arising for the treatment of a variety of rare diseases. At the same time, current treatment options for neurofibromatosis 1 and schwannomatosis are limited and do not directly address loss of gene/protein function. In addition, treatments have mostly focused on symptomatic tumors, but have failed to address multisystem involvement in these conditions. Gene-targeted therapies hold promise to address these limitations. However, despite intense interest over decades, multiple preclinical and clinical issues need to be resolved before they become a reality. The optimal approaches to gene-, mRNA-, or protein restoration and to delivery to the appropriate cell types remain elusive. Preclinical models that recapitulate manifestations of neurofibromatosis 1 and schwannomatosis need to be refined. The development of validated assays for measuring neurofibromin and merlin activity in animal and human tissues will be critical for early-stage trials, as will the selection of appropriate patients, based on their individual genotypes and risk/benefit balance. Once the safety of gene-targeted therapy for symptomatic tumors has been established, the possibility of addressing a wide range of symptoms, including non-tumor manifestations, should be explored. As preclinical efforts are underway, it will be essential to educate both clinicians and those affected by neurofibromatosis 1/schwannomatosis about the risks and benefits of gene-targeted therapy for these conditions.


Assuntos
Neurilemoma , Neurofibromatoses , Neurofibromatose 1 , Neurofibromatose 2 , Neoplasias Cutâneas , Animais , Humanos , Neurofibromatose 1/genética , Neurofibromatose 1/terapia , Neurofibromatose 2/diagnóstico , Neurofibromatose 2/genética , Neurofibromatose 2/patologia , Neurofibromatoses/genética , Neurofibromatoses/terapia , Neurofibromatoses/diagnóstico , Neurilemoma/genética , Neurilemoma/terapia , Neurilemoma/diagnóstico
3.
Heliyon ; 9(11): e22281, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045134

RESUMO

Background: CFTR nonsense alleles generate negligible CFTR protein due to the nonsense mutation: 1) triggering CFTR mRNA degradation by nonsense-mediated mRNA decay (NMD), and 2) terminating CFTR mRNA translation prematurely. Thus, people with cystic fibrosis (PwCF) who carry nonsense alleles cannot benefit from current modulator drugs, which target CFTR protein. In this study, we examined whether PTBP1 and HNRNPL, two RNA binding proteins that protect a subset of mRNAs with a long 3' untranslated region (UTR) from NMD, similarly affect CFTR mRNA.Silencing RNAs were used to deplete PTBP1 or HNRNPL in 16HBE14o- human bronchial epithelial cells expressing WT, G542X, or W1282X CFTR. CFTR mRNA abundance was measured relative to controls by quantitative PCR. PTBP1 and HNRNPL were also exogenously expressed in each cell line and CFTR mRNA levels were similarly quantified. Results: PTBP1 depletion reduced CFTR mRNA abundance in all three 16HBE14o- cell lines; HRNPL depletion reduced CFTR mRNA abundance in only the G542X and W1282X cell lines. Notably, decreased CFTR mRNA abundance correlated with increased mRNA decay. Exogenous expression of PTBP1 or HNRNPL increased CFTR mRNA abundance in all three cell lines; HNRNPL overexpression generally increased CFTR to a greater extent in G542X and W1282X 16HBE14o- cells.Our data indicate that PTBP1 and HNRNPL regulate CFTR mRNA abundance by protecting CFTR transcripts from NMD. This suggests that PTBP1 and/or HNRNPL may represent potential therapeutic targets to increase CFTR mRNA abundance and enhance responses to CFTR modulators and other therapeutic approaches in PwCF.

4.
J Cyst Fibros ; 22(4): 683-693, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37142522

RESUMO

BACKGROUND: A largely unexplored area of research is the identification and characterization of circular RNA (circRNA) in cystic fibrosis (CF). This study is the first to identify and characterize alterations in circRNA expression in cells lacking CFTR function. The circRNA expression profiles in whole blood transcriptomes from CF patients homozygous for the pathogenetic variant F508delCFTR are compared to healthy controls. METHODS: We developed a circRNA pipeline called circRNAFlow utilizing Nextflow. Whole blood transcriptomes from CF patients homozygous for the F508delCFTR-variant and healthy controls were utilized as input to circRNAFlow to discover dysregulated circRNA expression in CF samples compared to wild-type controls. Pathway enrichment analyzes were performed to investigate potential functions of dysregulated circRNAs in whole blood transcriptomes from CF samples compared to wild-type controls. RESULTS: A total of 118 dysregulated circRNAs were discovered in whole blood transcriptomes from CF patients homozygous for the F508delCFTR variant compared to healthy controls. 33 circRNAs were up regulated whilst 85 circRNAs were down regulated in CF samples compared to healthy controls. The overrepresented pathways of the host genes harboring dysregulated circRNA in CF samples compared to controls include positive regulation of responses to endoplasmic reticulum stress, intracellular transport, protein serine/threonine kinase activity, phospholipid-translocating ATPase complex, ferroptosis and cellular senescence. These enriched pathways corroborate the role of dysregulated cellular senescence in CF. CONCLUSION: This study highlights the underexplored roles of circRNAs in CF with a perspective to provide a more complete molecular characterization of CF.


Assuntos
Fibrose Cística , MicroRNAs , Humanos , RNA Circular/genética , RNA/genética , Transcriptoma , Fibrose Cística/genética , Senescência Celular , MicroRNAs/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 324(6): L756-L770, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37014818

RESUMO

Ten percent of cystic fibrosis (CF) patients carry a premature termination codon (PTC); no mutation-specific therapies exist for these individuals. ELX-02, a synthetic aminoglycoside, suppresses translation termination at PTCs (i.e., readthrough) by promoting the insertion of an amino acid at the PTC and restoring expression of full-length CFTR protein. The identity of amino acids inserted at PTCs affects the processing and function of the resulting full-length CFTR protein. We examined readthrough of the rare G550X-CFTR nonsense mutation due to its unique properties. We found that forskolin-induced swelling in G550X patient-derived intestinal organoids (PDOs) was significantly higher than in G542X PDOs (both UGA PTCs) with ELX-02 treatment, indicating greater CFTR function from the G550X allele. Using mass spectrometry, we identified tryptophan as the sole amino acid inserted in the G550X position during ELX-02- or G418-mediated readthrough, which differs from the three amino acids (cysteine, arginine, and tryptophan) inserted in the G542X position after treatment with G418. Compared with wild-type CFTR, Fischer rat thyroid (FRT) cells expressing the G550W-CFTR variant protein exhibited significantly increased forskolin-activated Cl- conductance, and G550W-CFTR channels showed increased PKA sensitivity and open probability. After treatment with ELX-02 and CFTR correctors, CFTR function rescued from the G550X allele in FRTs reached 20-40% of the wild-type level. These results suggest that readthrough of G550X produces greater CFTR function because of gain-of-function properties of the CFTR readthrough product that stem from its location in the signature LSGGQ motif found in ATP-binding cassette (ABC) transporters. G550X may be a particularly sensitive target for translational readthrough therapy.NEW & NOTEWORTHY We found that forskolin-induced swelling in G550X-CFTR patient-derived intestinal organoids (PDOs) was significantly higher than in G542X-CFTR PDOs after treatment with ELX-02. Tryptophan (W) was the sole amino acid inserted in the G550X position after readthrough. Resulting G550W-CFTR protein exhibited supernormal CFTR activity, PKA sensitivity, and open probability. These results show that aminoglycoside-induced readthrough of G550X produces greater CFTR function because of the gain-of-function properties of the CFTR readthrough product.


Assuntos
Aminoglicosídeos , Regulador de Condutância Transmembrana em Fibrose Cística , Ratos , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Aminoglicosídeos/farmacologia , Triptofano/genética , Colforsina/farmacologia , Códon sem Sentido , Antibacterianos , Inibidores da Síntese de Proteínas , Aminoácidos/genética , Ratos Endogâmicos F344
6.
Nat Commun ; 12(1): 4358, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272367

RESUMO

Premature termination codons (PTCs) prevent translation of a full-length protein and trigger nonsense-mediated mRNA decay (NMD). Nonsense suppression (also termed readthrough) therapy restores protein function by selectively suppressing translation termination at PTCs. Poor efficacy of current readthrough agents prompted us to search for better compounds. An NMD-sensitive NanoLuc readthrough reporter was used to screen 771,345 compounds. Among the 180 compounds identified with readthrough activity, SRI-37240 and its more potent derivative SRI-41315, induce a prolonged pause at stop codons and suppress PTCs associated with cystic fibrosis in immortalized and primary human bronchial epithelial cells, restoring CFTR expression and function. SRI-41315 suppresses PTCs by reducing the abundance of the termination factor eRF1. SRI-41315 also potentiates aminoglycoside-mediated readthrough, leading to synergistic increases in CFTR activity. Combining readthrough agents that target distinct components of the translation machinery is a promising treatment strategy for diseases caused by PTCs.


Assuntos
Códon sem Sentido/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/efeitos dos fármacos , Degradação do RNAm Mediada por Códon sem Sentido , Terminação Traducional da Cadeia Peptídica/efeitos dos fármacos , Fatores de Terminação de Peptídeos/metabolismo , Aminoglicosídeos/metabolismo , Códon sem Sentido/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Genes Reporter , Gentamicinas/farmacologia , Células HEK293 , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Fatores de Terminação de Peptídeos/genética , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , Ribossomos/metabolismo , Relação Estrutura-Atividade
7.
Eur J Med Chem ; 200: 112436, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32512483

RESUMO

Cystic fibrosis (CF) is a monogenic autosomal recessive disorder. The clinical manifestations of the disease are caused by ∼2,000 mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. It is unlikely that any one approach will be efficient in correcting all defects. The recent approvals of ivacaftor, lumacaftor/ivacaftor and elexacaftor/tezacaftor/ivacaftor represent the genesis of a new era of precision combination medicine for the CF patient population. In this review, we discuss targeted translational readthrough approaches as mono and combination therapies for CFTR nonsense mutations. We examine the current status of efficacy of translational readthrough/nonsense suppression therapies and their limitations, including non-native amino acid incorporation at PTCs and nonsense-mediated mRNA decay (NMD), along with approaches to tackle these limitations. We further elaborate on combining various therapies such as readthrough agents, NMD inhibitors, and corrector/potentiators to improve the efficacy and safety of suppression therapy. These mutation specific strategies that are directed towards the basic CF defects should positively impact CF patients bearing nonsense mutations.


Assuntos
Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Códon sem Sentido/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Indóis/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Pirrolidinas/farmacologia , Quinolonas/farmacologia , Animais , Códon sem Sentido/genética , Fibrose Cística/genética , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Mutação , Relação Estrutura-Atividade
8.
Mol Ther Nucleic Acids ; 20: 739-753, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32408052

RESUMO

Significant advances in biotechnology have led to the development of a number of different mutation-directed therapies. Some of these techniques have matured to a level that has allowed testing in clinical trials, but few have made it to approval by drug-regulatory bodies for the treatment of specific diseases. While there are still various hurdles to be overcome, recent success stories have proven the potential power of mutation-directed therapies and have fueled the hope of finding therapeutics for other genetic disorders. In this review, we summarize the state-of-the-art of various therapeutic approaches and assess their applicability to the genetic disorder neurofibromatosis type I (NF1). NF1 is caused by the loss of function of neurofibromin, a tumor suppressor and downregulator of the Ras signaling pathway. The condition is characterized by a variety of phenotypes and includes symptoms such as skin spots, nervous system tumors, skeletal dysplasia, and others. Hence, depending on the patient, therapeutics may need to target different tissues and cell types. While we also discuss the delivery of therapeutics, in particular via viral vectors and nanoparticles, our main focus is on therapeutic techniques that reconstitute functional neurofibromin, most notably cDNA replacement, CRISPR-based DNA repair, RNA repair, antisense oligonucleotide therapeutics including exon skipping, and nonsense suppression.

9.
Hum Mol Genet ; 26(16): 3116-3129, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28575328

RESUMO

In-frame premature termination codons (PTCs) account for ∼11% of all disease-associated mutations. PTC suppression therapy utilizes small molecules that suppress translation termination at a PTC to restore synthesis of a full-length protein. PTC suppression is mediated by the base pairing of a near-cognate aminoacyl-tRNA with a PTC and subsequently, the amino acid becomes incorporated into the nascent polypeptide at the site of the PTC. However, little is known about the identity of the amino acid(s) inserted at a PTC during this process in mammalian cells, or how the surrounding sequence context influences amino acid incorporation. Here, we determined the amino acids inserted at the cystic fibrosis transmembrane conductance regulator (CFTR) W1282X PTC (a UGA codon) in the context of its three upstream and downstream CFTR codons during G418-mediated suppression. We found that leucine, cysteine and tryptophan are inserted during W1282X suppression. Interestingly, these amino acids (and their proportions) are significantly different from those recently identified following G418-mediated suppression of the CFTR G542X UGA mutation. These results demonstrate for the first time that local mRNA sequence context plays a key role in near-cognate aminoacyl-tRNA selection during PTC suppression. We also found that some variant CFTR proteins generated by PTC suppression exhibit reduced maturation and activity, indicating the complexity of nonsense suppression therapy. However, both a CFTR corrector and potentiator enhanced activity of protein variants generated by G418-mediated suppression. These results suggest that PTC suppression in combination with CFTR modulators may be beneficial for the treatment of CF patients with PTCs.


Assuntos
Aminoácidos/genética , Códon sem Sentido , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Aminoácidos/metabolismo , Códon , Cisteína/genética , Cisteína/metabolismo , Fibrose Cística/metabolismo , Fibrose Cística/terapia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Genes Supressores , Células HEK293 , Humanos , Leucina/genética , Leucina/metabolismo , Mutação , Biossíntese de Proteínas , Triptofano/genética , Triptofano/metabolismo
10.
Proc Natl Acad Sci U S A ; 113(44): 12508-12513, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27702906

RESUMO

A premature termination codon (PTC) in the ORF of an mRNA generally leads to production of a truncated polypeptide, accelerated degradation of the mRNA, and depression of overall mRNA expression. Accordingly, nonsense mutations cause some of the most severe forms of inherited disorders. The small-molecule drug ataluren promotes therapeutic nonsense suppression and has been thought to mediate the insertion of near-cognate tRNAs at PTCs. However, direct evidence for this activity has been lacking. Here, we expressed multiple nonsense mutation reporters in human cells and yeast and identified the amino acids inserted when a PTC occupies the ribosomal A site in control, ataluren-treated, and aminoglycoside-treated cells. We find that ataluren's likely target is the ribosome and that it produces full-length protein by promoting insertion of near-cognate tRNAs at the site of the nonsense codon without apparent effects on transcription, mRNA processing, mRNA stability, or protein stability. The resulting readthrough proteins retain function and contain amino acid replacements similar to those derived from endogenous readthrough, namely Gln, Lys, or Tyr at UAA or UAG PTCs and Trp, Arg, or Cys at UGA PTCs. These insertion biases arise primarily from mRNA:tRNA mispairing at codon positions 1 and 3 and reflect, in part, the preferred use of certain nonstandard base pairs, e.g., U-G. Ataluren's retention of similar specificity of near-cognate tRNA insertion as occurs endogenously has important implications for its general use in therapeutic nonsense suppression.


Assuntos
Códon sem Sentido/genética , Oxidiazóis/farmacologia , RNA de Transferência/genética , Ribossomos/efeitos dos fármacos , Células HEK293 , Humanos , Biossíntese de Proteínas/efeitos dos fármacos , Estabilidade de RNA/efeitos dos fármacos , RNA de Transferência/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Transcrição Gênica/efeitos dos fármacos
11.
Am J Respir Crit Care Med ; 194(9): 1092-1103, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27104944

RESUMO

RATIONALE: Premature termination codons (PTCs) in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF). Several agents are known to suppress PTCs but are poorly efficacious or toxic. OBJECTIVES: To determine whether there are clinically available agents that elicit translational readthrough and improve CFTR function sufficient to confer therapeutic benefit to patients with CF with PTCs. METHODS: Two independent screens, firefly luciferase and CFTR-mediated transepithelial chloride conductance assay, were performed on a library of 1,600 clinically approved compounds using fisher rat thyroid cells stably transfected with stop codons. Select agents were further evaluated using secondary screening assays including short circuit current analysis on primary cells from patients with CF. In addition, the effect of CFTR modulators (ivacaftor) was tested in combination with the most efficacious agents. MEASUREMENTS AND MAIN RESULTS: From the primary screen, 48 agents were selected as potentially active. Following confirmatory tests in the transepithelial chloride conductance assay and prioritizing agents based on favorable pharmacologic properties, eight agents were advanced for secondary screening. Ivacaftor significantly increased short circuit current following forskolin stimulation in cells treated with pyranoradine tetraphosphate, potassium p-aminobenzoate, and escin as compared with vehicle control. Escin, an herbal agent, consistently induced readthrough activity as demonstrated by enhanced CFTR expression and function in vitro. CONCLUSIONS: Clinically approved drugs identified as potential readthrough agents, in combination with ivacaftor, may induce nonsense suppression to restore therapeutic levels of CFTR function. One or more agents may be suitable to advance to human testing.


Assuntos
Códon sem Sentido/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Descoberta de Drogas/métodos , Animais , Linhagem Celular , Códon sem Sentido/genética , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Luciferases/metabolismo , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase em Tempo Real
12.
Diseases ; 4(4)2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28367323

RESUMO

In-frame premature termination codons (PTCs) (also referred to as nonsense mutations) comprise ~10% of all disease-associated gene lesions. PTCs reduce gene expression in two ways. First, PTCs prematurely terminate translation of an mRNA, leading to the production of a truncated polypeptide that often lacks normal function and/or is unstable. Second, PTCs trigger degradation of an mRNA by activating nonsense-mediated mRNA decay (NMD), a cellular pathway that recognizes and degrades mRNAs containing a PTC. Thus, translation termination and NMD are putative therapeutic targets for the development of treatments for genetic diseases caused by PTCs. Over the past decade, significant progress has been made in the identification of compounds with the ability to suppress translation termination of PTCs (also referred to as readthrough). More recently, NMD inhibitors have also been explored as a way to enhance the efficiency of PTC suppression. Due to their relatively low threshold for correction, lysosomal storage diseases are a particularly relevant group of diseases to investigate the feasibility of nonsense suppression as a therapeutic approach. In this review, the current status of PTC suppression and NMD inhibition as potential treatments for lysosomal storage diseases will be discussed.

13.
Crit Rev Biochem Mol Biol ; 47(5): 444-63, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22672057

RESUMO

In this review, we describe our current understanding of translation termination and pharmacological agents that influence the accuracy of this process. A number of drugs have been identified that induce suppression of translation termination at in-frame premature termination codons (PTCs; also known as nonsense mutations) in mammalian cells. We discuss efforts to utilize these drugs to suppress disease-causing PTCs that result in the loss of protein expression and function. In-frame PTCs represent a genotypic subset of mutations that make up ~11% of all known mutations that cause genetic diseases, and millions of patients have diseases attributable to PTCs. Current approaches aimed at reducing the efficiency of translation termination at PTCs (referred to as PTC suppression therapy) have the goal of alleviating the phenotypic consequences of a wide range of genetic diseases. Suppression therapy is currently in clinical trials for treatment of several genetic diseases caused by PTCs, and preliminary results suggest that some patients have shown clinical improvements. While current progress is promising, we discuss various approaches that may further enhance the efficiency of this novel therapeutic approach.


Assuntos
Aminoglicosídeos/uso terapêutico , Códon sem Sentido/metabolismo , Doenças Genéticas Inatas/tratamento farmacológico , Terminação Traducional da Cadeia Peptídica , Animais , Ensaios Clínicos como Assunto , Códon sem Sentido/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Humanos , Camundongos , Degradação do RNAm Mediada por Códon sem Sentido , Fenótipo , Biossíntese de Proteínas , Inibidores da Síntese de Proteínas/uso terapêutico
14.
Wiley Interdiscip Rev RNA ; 2(6): 837-52, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21976286

RESUMO

Suppression therapy is a treatment strategy for genetic diseases caused by nonsense mutations. This therapeutic approach utilizes pharmacological agents that suppress translation termination at in-frame premature termination codons (PTCs) to restore translation of a full-length, functional polypeptide. The efficiency of various classes of compounds to suppress PTCs in mammalian cells is discussed along with the current limitations of this therapy. We also elaborate on approaches to improve the efficiency of suppression that include methods to enhance the effectiveness of current suppression drugs and the design or discovery of new, more effective suppression agents. Finally, we discuss the role of nonsense-mediated mRNA decay (NMD) in limiting the effectiveness of suppression therapy, and describe tactics that may allow the efficiency of NMD to be modulated in order to enhance suppression therapy.


Assuntos
Códon sem Sentido , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Terapia Genética/métodos , Aminoglicosídeos/química , Aminoglicosídeos/farmacologia , Aminoglicosídeos/toxicidade , Animais , Códon sem Sentido/efeitos dos fármacos , Códon sem Sentido/genética , Códon sem Sentido/metabolismo , Desenho de Fármacos , Doenças Genéticas Inatas/metabolismo , Humanos , Modelos Biológicos , Modelos Genéticos , Degradação do RNAm Mediada por Códon sem Sentido/efeitos dos fármacos , Terminação Traducional da Cadeia Peptídica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Supressão Genética
15.
Am J Physiol Lung Cell Mol Physiol ; 301(4): L557-67, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21743028

RESUMO

We sought to establish whether the cystic fibrosis transmembrane conductance regulator (CFTR) regulates the activity of amiloride-sensitive sodium channels (ENaC) in alveolar epithelial cells of wild-type, heterozygous (Cftr(+/-)), knockout (Cftr(-/-)), and ΔF508-expressing mice in situ. RT-PCR studies confirmed the presence of CFTR message in freshly isolated alveolar type II (ATII) cells from wild-type mice. We patched alveolar type I (ATI) and ATII cells in freshly prepared lung slices from these mice and demonstrated the presence of 4-pS ENaC channels with the following basal open probabilities (P(o)): wild-type=0.21 ± 0.015: Cftr(+/-)=0.4 ± 0.03; ΔF508=0.55 ± 0.01; and Cftr(-/-)=and 0.81 ± 0.016 (means ± SE; n ≥ 9). Forskolin (5 µM) or trypsin (2 µM), applied in the pipette solution, increased the P(o) and number of channels in ATII cells of wild-type, Cftr(+/-), and ΔF508, but not in Cftr(-/-) mice, suggesting that the latter were maximally activated. Western blot analysis showed that lungs of all groups of mice had similar levels of α-ENaC; however, lungs of Cftr(+/-) and Cftr(-/-) mice had significantly higher levels of an α-ENaC proteolytic fragment (65 kDa) that is associated with active ENaC channels. Our results indicate that ENaC activity is inversely correlated to predicted CFTR levels and that CFTR heterozygous and homozygous mice have higher levels of proteolytically processed ENaC fragments in their lungs. This is the first demonstration of functional ENaC-CFTR interactions in alveolar epithelial cells in situ.


Assuntos
Células Epiteliais Alveolares/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Canais Epiteliais de Sódio/metabolismo , Potenciais da Membrana/fisiologia , Fragmentos de Peptídeos/metabolismo , Transdução de Sinais/fisiologia , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/efeitos dos fármacos , Amilorida/farmacologia , Animais , Western Blotting , Células Cultivadas , Colforsina/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Canais Epiteliais de Sódio/genética , Expressão Gênica/efeitos dos fármacos , Heterozigoto , Homozigoto , Camundongos , Camundongos Knockout , Oócitos , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tripsina/metabolismo , Xenopus laevis
16.
J Biol Chem ; 284(11): 6885-92, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19136563

RESUMO

Aminoglycosides such as gentamicin have the ability to suppress translation termination at premature stop mutations, leading to a partial restoration of protein expression and function. This observation led to studies showing that this approach may provide a viable treatment for patients with genetic diseases such as cystic fibrosis that are caused by premature stop mutations. Although aminoglycoside treatment is sometimes associated with harmful side effects, several studies have shown that the co-administration of polyanions such as poly-L-aspartic acid (PAA) can both reduce toxicity and increase the intracellular aminoglycoside concentration. In the current study we examined how the co-administration of gentamicin with PAA influenced the readthrough of premature stop codons in cultured cells and a cystic fibrosis mouse model. Using a dual luciferase readthrough reporter system in cultured cells, we found that the co-administration of gentamicin with PAA increased readthrough 20-40% relative to cells treated with the same concentration of gentamicin alone. Using a Cftr-/- hCFTR-G542X mouse model, we found that PAA also increased the in vivo nonsense suppression induced by gentamicin. Following the withdrawal of gentamicin, PAA significantly prolonged the time interval during which readthrough could be detected, as shown by short circuit current measurements and immunofluorescence. Because the use of gentamicin to suppress disease-causing nonsense mutations will require their long term administration, the ability of PAA to reduce toxicity and increase both the level and duration of readthrough has important implications for this promising therapeutic approach.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/tratamento farmacológico , Gentamicinas/farmacologia , Mutação de Sentido Incorreto , Peptídeos/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Substituição de Aminoácidos , Animais , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Modelos Animais de Doenças , Sinergismo Farmacológico , Gentamicinas/agonistas , Gentamicinas/uso terapêutico , Humanos , Camundongos , Camundongos Endogâmicos CFTR , Camundongos Knockout , Peptídeos/agonistas , Peptídeos/uso terapêutico , Inibidores da Síntese de Proteínas/agonistas , Inibidores da Síntese de Proteínas/uso terapêutico
17.
Mol Cell ; 30(5): 599-609, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18538658

RESUMO

Organisms that use the standard genetic code recognize UAA, UAG, and UGA as stop codons, whereas variant code species frequently alter this pattern of stop codon recognition. We previously demonstrated that a hybrid eRF1 carrying the Euplotes octocarinatus domain 1 fused to Saccharomyces cerevisiae domains 2 and 3 (Eo/Sc eRF1) recognized UAA and UAG, but not UGA, as stop codons. In the current study, we identified mutations in Eo/Sc eRF1 that restore UGA recognition and define distinct roles for the TASNIKS and YxCxxxF motifs in eRF1 function. Mutations in or near the YxCxxxF motif support the cavity model for stop codon recognition by eRF1. Mutations in the TASNIKS motif eliminated the eRF3 requirement for peptide release at UAA and UAG codons, but not UGA codons. These results suggest that the TASNIKS motif and eRF3 function together to trigger eRF1 conformational changes that couple stop codon recognition and peptide release during eukaryotic translation termination.


Assuntos
Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , Motivos de Aminoácidos/genética , Animais , Códon de Terminação/genética , Euplotes/genética , Modelos Biológicos , Fatores de Terminação de Peptídeos/genética , Peptídeos/metabolismo , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Supressão Genética
18.
J Mol Med (Berl) ; 84(7): 573-82, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16541275

RESUMO

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause the disease cystic fibrosis. We previously reported that gentamicin administration suppressed a CFTR premature stop mutation in a Cftr-/- mouse model carrying a human CFTR-G542X (hCFTR-G542X) transgene, resulting in the appearance of hCFTR protein and function. However, the high doses used in that study resulted in peak serum levels well beyond the levels typically administered to humans. To address this problem, we identified doses of both gentamicin and amikacin that resulted in peak serum levels within their accepted clinical ranges. We then asked whether these doses could suppress the hCFTR-G542X mutation in the Cftr-/- hCFTR-G542X mouse model. Our results indicate that low doses of each compound restored some hCFTR protein expression and function, as shown by immunofluorescence and short-circuit current measurements. However, we found that amikacin suppressed the hCFTR-G542X premature stop mutation more effectively than gentamicin when administered at these clinically relevant doses. Because amikacin is also less toxic than gentamicin, it may represent a superior choice for suppression therapy in patients that carry a premature stop mutation in the CFTR gene.


Assuntos
Amicacina/farmacologia , Códon sem Sentido/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Amicacina/sangue , Sequência de Aminoácidos , Animais , Sequência de Bases , AMP Cíclico/farmacologia , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Gentamicinas/sangue , Gentamicinas/farmacologia , Humanos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Biossíntese de Proteínas/efeitos dos fármacos
20.
RNA ; 10(4): 691-703, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15037778

RESUMO

The Nonsense-Mediated mRNA Decay (NMD) pathway mediates the rapid degradation of mRNAs that contain premature stop mutations in eukaryotic organisms. It was recently shown that mutations in three yeast genes that encode proteins involved in the NMD process, UPF1, UPF2, and UPF3, also reduce the efficiency of translation termination. In the current study, we compared the efficiency of translation termination in a upf1Delta strain and a [PSI(+)] strain using a collection of translation termination reporter constructs. The [PSI(+)] state is caused by a prion form of the polypeptide chain release factor eRF3 that limits its availability to participate in translation termination. In contrast, the mechanism by which Upf1p influences translation termination is poorly understood. The efficiency of translation termination is primarily determined by a tetranucleotide termination signal consisting of the stop codon and the first nucleotide immediately 3' of the stop codon. We found that the upf1Delta mutation, like the [PSI(+)] state, decreases the efficiency of translation termination over a broad range of tetranucleotide termination signals in a unique, context-dependent manner. These results suggest that Upf1p may associate with the termination complex prior to polypeptide chain release. We also found that the increase in readthrough observed in a [PSI(+)]/upf1Delta strain was larger than the readthrough observed in strains carrying either defect alone, indicating that the upf1Delta mutation and the [PSI(+)] state influence the termination process in distinct ways. Finally, our analysis revealed that the mRNA destabilization associated with NMD could be separated into two distinct forms that correlated with the extent the premature stop codon was suppressed. The minor component of NMD was a 25% decrease in mRNA levels observed when readthrough was >/=0.5%, while the major component was represented by a larger decrease in mRNA abundance that was observed only when readthrough was

Assuntos
Códon sem Sentido/metabolismo , Terminação Traducional da Cadeia Peptídica/fisiologia , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Genes Reporter , Mutação , Fatores de Terminação de Peptídeos , Príons/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA