Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
MAGMA ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896407

RESUMO

In this paper, we review the value of phantoms for body MRI in the context of their uses for quantitative MRI methods research, clinical trials, and clinical imaging. Certain uses of phantoms are common throughout the body MRI community, including measuring bias, assessing reproducibility, and training. In addition to these uses, phantoms in body MRI methods research are used for novel methods development and the design of motion compensation and mitigation techniques. For clinical trials, phantoms are an essential part of quality management strategies, facilitating the conduct of ethically sound, reliable, and regulatorily compliant clinical research of both novel MRI methods and therapeutic agents. In the clinic, phantoms are used for development of protocols, mitigation of cost, quality control, and radiotherapy. We briefly review phantoms developed for quantitative body MRI, and finally, we review open questions regarding the most effective use of a phantom for body MRI.

2.
medRxiv ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38633799

RESUMO

Breast cancer screening is necessary to reduce mortality due to undetected breast cancer. Current methods have limitations, and as a result many women forego regular screening. Magnetic resonance imaging (MRI) can overcome most of these limitations, but access to conventional MRI is not widely available for routine annual screening. Here, we used an MRI scanner operating at ultra-low field (ULF) to image the left breasts of 11 women (mean age, 35 years ±13 years) in the prone position. Three breast radiologists reviewed the imaging and were able to discern the breast outline and distinguish fibroglandular tissue (FGT) from intramammary adipose tissue. Additionally, the expert readers agreed on their assessment of the breast tissue pattern including fatty, scattered FGT, heterogeneous FGT, and extreme FGT. This preliminary work demonstrates that ULF breast MRI is feasible and may be a potential option for comfortable, widely deployable, and low-cost breast cancer diagnosis and screening.

3.
Sci Rep ; 13(1): 11520, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460669

RESUMO

We have investigated the efficacy of superparamagnetic iron oxide nanoparticles (SPIONs) as positive T1 contrast agents for low-field magnetic resonance imaging (MRI) at 64 millitesla (mT). Iron oxide-based agents, such as the FDA-approved ferumoxytol, were measured using a variety of techniques to evaluate T1 contrast at 64 mT. Additionally, we characterized monodispersed carboxylic acid-coated SPIONs with a range of diameters (4.9-15.7 nm) in order to understand size-dependent properties of T1 contrast at low-field. MRI contrast properties were measured using 64 mT MRI, magnetometry, and nuclear magnetic resonance dispersion (NMRD). We also measured MRI contrast at 3 T to provide comparison to a standard clinical field strength. SPIONs have the capacity to perform well as T1 contrast agents at 64 mT, with measured longitudinal relaxivity (r1) values of up to 67 L mmol-1 s-1, more than an order of magnitude higher than corresponding r1 values at 3 T. The particles exhibit size-dependent longitudinal relaxivities and outperform a commercial Gd-based agent (gadobenate dimeglumine) by more than eight-fold at physiological temperatures. Additionally, we characterize the ratio of transverse to longitudinal relaxivity, r2/r1 and find that it is ~ 1 for the SPION based agents at 64 mT, indicating a favorable balance of relaxivities for T1-weighted contrast imaging. We also correlate the magnetic and structural properties of the particles with models of nanoparticle relaxivity to understand generation of T1 contrast. These experiments show that SPIONs, at low fields being targeted for point-of-care low-field MRI systems, have a unique combination of magnetic and structural properties that produce large T1 relaxivities.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Meios de Contraste/química , Nanopartículas de Magnetita/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Nanopartículas Magnéticas de Óxido de Ferro
4.
Med Phys ; 49(7): 4508-4517, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35365884

RESUMO

PURPOSE: To assess the technical performance of the apparent diffusion coefficient (ADC) on a dedicated 3T radiotherapy scanner, using a standardized phantom and sequences. Investigations into factors that could impact the technical performance of ADC in the clinic were also completed, including changing the slice-encoded imaging direction and the reference sample ADC value. METHODS: ADC acquisitions were performed monthly on an isotropic diffusion phantom over 1 year. Measurements of ADC %bias, coefficients of variation for short-/long-term repeatability and precision (CVST /CVLT and CVP ), and b-value dependency (Depb ) were calculated. The measurements were then assessed according to the Quantitative Imaging Biomarker Alliance (QIBA) Diffusion Profile specifications. RESULTS: The average of all measurements over the year was within Profile recommended ranges. This included when testing was performed in different imaging directions, and on samples that had different ADC reference values (0.4-1.1 µm2 /ms). Results in the axial plane for the central water vial included a bias of +0.05%, CVST /CVLT /CVP  = 0.1%/ 0.9%/0.4% and Depb  = 0.4%. CONCLUSIONS: The technical performance of ADC on a radiotherapy dedicated MRI scanner over the course of 12 months was considered conformant to the QIBA Profile. Quantifying these metrics and factors that may affect the performance is essential in progressing the use of ADC clinically: ensuring that the observed change of ADC in a tissue is due to a physiological response and not measurement variability.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética , Biomarcadores , Imagem de Difusão por Ressonância Magnética/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes
5.
Magn Reson Med ; 87(3): 1184-1206, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34825741

RESUMO

On behalf of the International Society for Magnetic Resonance in Medicine (ISMRM) Quantitative MR Study Group, this article provides an overview of considerations for the development, validation, qualification, and dissemination of quantitative MR (qMR) methods. This process is framed in terms of two central technical performance properties, i.e., bias and precision. Although qMR is confounded by undesired effects, methods with low bias and high precision can be iteratively developed and validated. For illustration, two distinct qMR methods are discussed throughout the manuscript: quantification of liver proton-density fat fraction, and cardiac T1 . These examples demonstrate the expansion of qMR methods from research centers toward widespread clinical dissemination. The overall goal of this article is to provide trainees, researchers, and clinicians with essential guidelines for the development and validation of qMR methods, as well as an understanding of necessary steps and potential pitfalls for the dissemination of quantitative MR in research and in the clinic.


Assuntos
Imageamento por Ressonância Magnética , Terapia com Prótons , Viés , Espectroscopia de Ressonância Magnética , Prótons , Reprodutibilidade dos Testes
6.
J Appl Clin Med Phys ; 22(11): 143-150, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34562341

RESUMO

PURPOSE: To determine baseline accuracy and reproducibility of T1 and T2 relaxation times over 12 months on a dedicated radiotherapy MRI scanner. METHODS: An International Society of Magnetic Resonance in Medicine/National Institute of Standards and Technology (ISMRM/NIST) System Phantom was scanned monthly on a 3T MRI scanner for 1 year. T1 was measured using inversion recovery (T1 -IR) and variable flip angle (T1 -VFA) sequences and T2 was measured using a multi-echo spin echo (T2 -SE) sequence. For each vial in the phantom, accuracy errors (%bias) were determined by the relative differences in measured T1 and T2 times compared to reference values. Reproducibility was measured by the coefficient of variation (CV) of T1 and T2 measurements across monthly scans. Accuracy and reproducibility were mainly assessed on vials with relaxation times expected to be in physiological ranges at 3T. RESULTS: A strong linear correlation between measured and reference relaxation times was found for all sequences tested (R2  > 0.997). Baseline bias (and CV[%]) for T1 -IR, T1 -VFA and T2 -SE sequences were +2.0% (2.1), +6.5% (4.2), and +8.5% (1.9), respectively. CONCLUSIONS: The accuracy and reproducibility of T1 and T2 on the scanner were considered sufficient for the sequences tested. No longitudinal trends of variation were deduced, suggesting less frequent measurements are required following the establishment of baselines.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Reprodutibilidade dos Testes
7.
Magn Reson Med ; 79(5): 2564-2575, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28913930

RESUMO

PURPOSE: To determine the in vitro accuracy, test-retest repeatability, and interplatform reproducibility of T1 quantification protocols used for dynamic contrast-enhanced MRI at 1.5 and 3 T. METHODS: A T1 phantom with 14 samples was imaged at eight centers with a common inversion-recovery spin-echo (IR-SE) protocol and a variable flip angle (VFA) protocol using seven flip angles, as well as site-specific protocols (VFA with different flip angles, variable repetition time, proton density, and Look-Locker inversion recovery). Factors influencing the accuracy (deviation from reference NMR T1 measurements) and repeatability were assessed using general linear mixed models. Interplatform reproducibility was assessed using coefficients of variation. RESULTS: For the common IR-SE protocol, accuracy (median error across platforms = 1.4-5.5%) was influenced predominantly by T1 sample (P < 10-6 ), whereas test-retest repeatability (median error = 0.2-8.3%) was influenced by the scanner (P < 10-6 ). For the common VFA protocol, accuracy (median error = 5.7-32.2%) was influenced by field strength (P = 0.006), whereas repeatability (median error = 0.7-25.8%) was influenced by the scanner (P < 0.0001). Interplatform reproducibility with the common VFA was lower at 3 T than 1.5 T (P = 0.004), and lower than that of the common IR-SE protocol (coefficient of variation 1.5T: VFA/IR-SE = 11.13%/8.21%, P = 0.028; 3 T: VFA/IR-SE = 22.87%/5.46%, P = 0.001). Among the site-specific protocols, Look-Locker inversion recovery and VFA (2-3 flip angles) protocols showed the best accuracy and repeatability (errors < 15%). CONCLUSIONS: The VFA protocols with 2 to 3 flip angles optimized for different applications achieved acceptable balance of extensive spatial coverage, accuracy, and repeatability in T1 quantification (errors < 15%). Further optimization in terms of flip-angle choice for each tissue application, and the use of B1 correction, are needed to improve the robustness of VFA protocols for T1 mapping. Magn Reson Med 79:2564-2575, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Encéfalo/diagnóstico por imagem , Mama/diagnóstico por imagem , Meios de Contraste/química , Feminino , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Masculino , Neoplasias/diagnóstico por imagem , Próstata/diagnóstico por imagem , Reprodutibilidade dos Testes
8.
J Magn Reson Imaging ; 44(3): 610-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26949897

RESUMO

PURPOSE: We present a breast phantom designed to enable quantitative assessment of measurements of T1 relaxation time, apparent diffusion coefficient (ADC), and other attributes of breast tissue, with long-term support from a national metrology institute. MATERIALS AND METHODS: A breast phantom was created with two independent, interchangeable units for diffusion and T1 /T2 relaxation, each with flexible outer shells. The T1 unit was filled with corn syrup solution and grapeseed oil to mimic the relaxation behavior of fibroglandular and fatty tissues, respectively. The diffusion unit contains plastic tubes filled with aqueous solutions of polyvinylpyrrolidone (PVP) to modulate the ADC. The phantom was imaged at 1.5T and 3.0T using magnetic resonance imaging (MRI) scanners and common breast coils from multiple manufacturers to assess T1 and T2 relaxation time and ADC values. RESULTS: The fibroglandular mimic exhibited target T1 values on 1.5T and 3.0T clinical systems (25-75 percentile range: 1289 to 1400 msec and 1533 to 1845 msec, respectively) across all bore temperatures. PVP solutions mimicked the range of ADC values from malignant tumors to normal breast tissue (40% PVP median: 633 × 10(-6) mm(2) /s to 0% PVP median: 2231 × 10(-6) mm(2) /s) at temperatures of 17-24°C. The interchangeable phantom units allowed both the diffusion and T1 /T2 units to be tested on the left and right sides of the coil to assess any variation. CONCLUSION: This phantom enables T1 and ADC measurements, fits in a variety of clinical breast coils, and can serve as a quality control tool to facilitate the standardization of quantitative measurements for breast MRI. J. Magn. Reson. Imaging 2016;44:610-619.


Assuntos
Materiais Biomiméticos/química , Mama/diagnóstico por imagem , Mama/fisiologia , Interpretação de Imagem Assistida por Computador/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Mama/anatomia & histologia , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA