Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med ; 3(10): 705-721.e11, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36044897

RESUMO

BACKGROUND: The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern, in particular the newly emerged Omicron (B.1.1.529) variant and its BA.X lineages, has rendered ineffective a number of previously FDA emergency use authorized SARS-CoV-2 neutralizing antibody therapies. Furthermore, those approved antibodies with neutralizing activity against Omicron BA.1 are reportedly ineffective against the subset of Omicron subvariants that contain a R346K substitution, BA.1.1, and the more recently emergent BA.2, demonstrating the continued need for discovery and characterization of candidate therapeutic antibodies with the breadth and potency of neutralizing activity required to treat newly diagnosed COVID-19 linked to recently emerged variants of concern. METHODS: Following a campaign of antibody discovery based on the vaccination of Harbor H2L2 mice with defined SARS-CoV-2 spike domains, we have characterized the activity of a large collection of spike-binding antibodies and identified a lead neutralizing human IgG1 LALA antibody, STI-9167. FINDINGS: STI-9167 has potent, broad-spectrum neutralizing activity against the current SARS-COV-2 variants of concern and retained activity against each of the tested Omicron subvariants in both pseudotype and live virus neutralization assays. Furthermore, STI-9167 nAb administered intranasally or intravenously provided protection against weight loss and reduced virus lung titers to levels below the limit of quantitation in Omicron-infected K18-hACE2 transgenic mice. CONCLUSIONS: With this established activity profile, a cGMP cell line has been developed and used to produce cGMP drug product intended for intravenous or intranasal use in human clinical trials. FUNDING: Funded by CRIPT (no. 75N93021R00014), DARPA (HR0011-19-2-0020), and NCI Seronet (U54CA260560).


Assuntos
Anticorpos Neutralizantes , Tratamento Farmacológico da COVID-19 , Administração Intranasal , Animais , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Humanos , Imunoglobulina G , Glicoproteínas de Membrana , Camundongos , Testes de Neutralização , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral
2.
J Virol ; 96(2): e0106321, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34669512

RESUMO

COVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System show that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known. We integrated cell biological and physiological analyses of human cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs) infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the presence of interleukins (ILs) with clinical findings related to laboratory values in COVID-19 patients to identify plausible mechanisms of cardiac disease in COVID-19 patients. We infected hiPSC-derived cardiomyocytes from healthy human subjects with SARS-CoV-2 in the absence and presence of IL-6 and IL-1ß. Infection resulted in increased numbers of multinucleated cells. Interleukin treatment and infection resulted in disorganization of myofibrils, extracellular release of troponin I, and reduced and erratic beating. Infection resulted in decreased expression of mRNA encoding key proteins of the cardiomyocyte contractile apparatus. Although interleukins did not increase the extent of infection, they increased the contractile dysfunction associated with viral infection of cardiomyocytes, resulting in cessation of beating. Clinical data from hospitalized patients from the Mount Sinai Health System show that a significant portion of COVID-19 patients without history of heart disease have elevated troponin and interleukin levels. A substantial subset of these patients showed reduced left ventricular function by echocardiography. Our laboratory observations, combined with the clinical data, indicate that direct effects on cardiomyocytes by interleukins and SARS-CoV-2 infection might underlie heart disease in COVID-19 patients. IMPORTANCE SARS-CoV-2 infects multiple organs, including the heart. Analyses of hospitalized patients show that a substantial number without prior indication of heart disease or comorbidities show significant injury to heart tissue, assessed by increased levels of troponin in blood. We studied the cell biological and physiological effects of virus infection of healthy human iPSC-derived cardiomyocytes in culture. Virus infection with interleukins disorganizes myofibrils, increases cell size and the numbers of multinucleated cells, and suppresses the expression of proteins of the contractile apparatus. Viral infection of cardiomyocytes in culture triggers release of troponin similar to elevation in levels of COVID-19 patients with heart disease. Viral infection in the presence of interleukins slows down and desynchronizes the beating of cardiomyocytes in culture. The cell-level physiological changes are similar to decreases in left ventricular ejection seen in imaging of patients' hearts. These observations suggest that direct injury to heart tissue by virus can be one underlying cause of heart disease in COVID-19.


Assuntos
COVID-19/imunologia , Células-Tronco Pluripotentes Induzidas , Interleucina-10/imunologia , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Miócitos Cardíacos , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/virologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/virologia
3.
Cell Rep ; 35(7): 109133, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33984267

RESUMO

Effective control of COVID-19 requires antivirals directed against SARS-CoV-2. We assessed 10 hepatitis C virus (HCV) protease-inhibitor drugs as potential SARS-CoV-2 antivirals. There is a striking structural similarity of the substrate binding clefts of SARS-CoV-2 main protease (Mpro) and HCV NS3/4A protease. Virtual docking experiments show that these HCV drugs can potentially bind into the Mpro substrate-binding cleft. We show that seven HCV drugs inhibit both SARS-CoV-2 Mpro protease activity and SARS-CoV-2 virus replication in Vero and/or human cells. However, their Mpro inhibiting activities did not correlate with their antiviral activities. This conundrum is resolved by demonstrating that four HCV protease inhibitor drugs, simeprevir, vaniprevir, paritaprevir, and grazoprevir inhibit the SARS CoV-2 papain-like protease (PLpro). HCV drugs that inhibit PLpro synergize with the viral polymerase inhibitor remdesivir to inhibit virus replication, increasing remdesivir's antiviral activity as much as 10-fold, while those that only inhibit Mpro do not synergize with remdesivir.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , COVID-19/virologia , Técnicas de Cultura de Células , Linhagem Celular , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Reposicionamento de Medicamentos/métodos , Sinergismo Farmacológico , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , Replicação Viral/efeitos dos fármacos
4.
Science ; 371(6532): 926-931, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33495306

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins interact with the eukaryotic translation machinery, and inhibitors of translation have potent antiviral effects. We found that the drug plitidepsin (aplidin), which has limited clinical approval, possesses antiviral activity (90% inhibitory concentration = 0.88 nM) that is more potent than remdesivir against SARS-CoV-2 in vitro by a factor of 27.5, with limited toxicity in cell culture. Through the use of a drug-resistant mutant, we show that the antiviral activity of plitidepsin against SARS-CoV-2 is mediated through inhibition of the known target eEF1A (eukaryotic translation elongation factor 1A). We demonstrate the in vivo efficacy of plitidepsin treatment in two mouse models of SARS-CoV-2 infection with a reduction of viral replication in the lungs by two orders of magnitude using prophylactic treatment. Our results indicate that plitidepsin is a promising therapeutic candidate for COVID-19.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Depsipeptídeos/farmacologia , Fator 1 de Elongação de Peptídeos/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Antivirais/uso terapêutico , COVID-19/prevenção & controle , COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/biossíntese , Proteínas do Nucleocapsídeo de Coronavírus/genética , Depsipeptídeos/administração & dosagem , Depsipeptídeos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Feminino , Células HEK293 , Humanos , Pulmão/virologia , Camundongos Endogâmicos C57BL , Mutação , Peptídeos Cíclicos , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , RNA Viral/biossíntese , RNA Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos
5.
PLoS Pathog ; 16(2): e1008305, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32053707

RESUMO

N6-methyladenosine (m6A) is the most abundant HIV RNA modification but the interplay between the m6A reader protein YTHDF3 and HIV replication is not well understood. We found that knockout of YTHDF3 in human CD4+ T-cells increases infection supporting the role of YTHDF3 as a restriction factor. Overexpression of the YTHDF3 protein in the producer cells reduces the infectivity of the newly produced viruses. YTHDF3 proteins are incorporated into HIV particles in a nucleocapsid-dependent manner permitting the m6A reader protein to limit infection in the new target cell at the step of reverse transcription. Importantly, HIV protease cleaves the virion-incorporated full-length YTHDF3 protein, a process which is blocked by HIV protease inhibitors used to treat HIV infected patients. Mass-spectrometry confirmed the proteolytic processing of YTHDF3 in the virion. Thus, HIV protease cleaves the virion-encapsidated host m6A effector protein in addition to the viral polyproteins to ensure optimal infectivity of the mature virion.


Assuntos
Protease de HIV/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Antivirais/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Células HEK293 , Infecções por HIV/virologia , Protease de HIV/fisiologia , HIV-1/genética , Humanos , Cultura Primária de Células , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA