Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-15180451

RESUMO

Heterotrimeric G-protein-coupled receptors (GPCRs) mediate a wide variety of organismal functions ranging from vision, olfaction, and gustation to the development and physiology of the cardiovascular, neuronal, and immune system. Naturally they are targets of a large number of therapeutic drugs. The regulators of G protein signaling (RGS) are a family of diverse proteins that regulate the GPCR-mediated signaling pathways principally by acting as GTPase activating proteins (GAPs) for the alpha subunit of the heterotrimeric G-proteins. Certain members of the RGS family contain multiple domains and motifs that mediate interactions with other signaling molecules, thus linking GPCR-dependent and GPCR-independent signaling pathways. Because of their ability to fine-tune vital GPCR-mediated processes and recent findings linking them to brain disorders, retinitis pigmentosa, and cancer RGS proteins have become excellent candidates for new drug discovery. The focus of this review is to discuss the roles of the RGS proteins in the development and normal physiology of cardiovascular and immune system, and to explore their potential as drug targets useful for the treatment of pathological conditions of the cardiovascular and immune systems.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Reguladores de Proteínas de Ligação ao GTP/metabolismo , Imunidade/efeitos dos fármacos , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/imunologia , Reguladores de Proteínas de Ligação ao GTP/genética , Reguladores de Proteínas de Ligação ao GTP/imunologia , Reguladores de Proteínas de Ligação ao GTP/fisiologia , Humanos , Imunidade/genética , Transdução de Sinais/efeitos dos fármacos
2.
BMC Cell Biol ; 2: 21, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11716781

RESUMO

BACKGROUND: Luteinizing hormone secreted by the anterior pituitary gland regulates gonadal function. Luteinizing hormone secretion is regulated both by alterations in gonadotrope responsiveness to hypothalamic gonadotropin releasing hormone and by alterations in gonadotropin releasing hormone secretion. The mechanisms that determine gonadotrope responsiveness are unknown but may involve regulators of G protein signaling (RGSs). These proteins act by antagonizing or abbreviating interaction of Galpha proteins with effectors such as phospholipase Cbeta. Previously, we reported that gonadotropin releasing hormone-stimulated second messenger inositol trisphosphate production was inhibited when RGS3 and gonadotropin releasing hormone receptor cDNAs were co-transfected into the COS cell line. Here, we present evidence for RGS3 inhibition of gonadotropin releasing hormone-induced luteinizing hormone secretion from cultured rat pituitary cells. RESULTS: A truncated version of RGS3 (RGS3T = RGS3 314-519) inhibited gonadotropin releasing hormone-stimulated inositol trisphosphate production more potently than did RSG3 in gonadotropin releasing hormone receptor-bearing COS cells. An RSG3/glutathione-S-transferase fusion protein bound more 35S-Gqalpha than any other member of the G protein family tested. Adenoviral-mediated RGS3 gene transfer in pituitary gonadotropes inhibited gonadotropin releasing hormone-stimulated luteinizing hormone secretion in a dose-related fashion. Adeno-RGS3 also inhibited gonadotropin releasing hormone stimulated 3H-inositol phosphate accumulation, consistent with a molecular site of action at the Gqalpha protein. CONCLUSIONS: RGS3 inhibits gonadotropin releasing hormone-stimulated second messenger production (inositol trisphosphate) as well as luteinizing hormone secretion from rat pituitary gonadotropes apparently by binding and suppressing the transduction properties of Gqalpha protein function. A version of RGS3 that is amino-terminally truncated is even more potent than intact RGS3 at inhibiting gonadotropin releasing hormone-stimulated inositol trisphosphate production.


Assuntos
Proteínas de Ligação ao GTP , Proteínas Ativadoras de GTPase , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Hormônio Luteinizante/metabolismo , Adeno-Hipófise/metabolismo , Proteínas RGS/fisiologia , Proteínas Repressoras , Animais , Células COS , Sinalização do Cálcio , Células Cultivadas , Feminino , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Proteínas RGS/genética , Ratos , Receptores LHRH/metabolismo , Deleção de Sequência
3.
J Biol Chem ; 276(34): 31845-50, 2001 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-11435419

RESUMO

Signaling via a variety of G-protein-coupled receptors (GPCRs) leads to activation of nuclear factor (NF)-kappa B. Evidence exists for a signaling pathway initiated by the B2 type bradykinin receptor via G(q) activation, which leads to the sequential stimulation of phosphoinositide 3-kinase (PI3K), the serine/threonine kinase Akt, I kappa B kinases, and finally nuclear factor NF-kappa B-dependent transcription. GPCR-mediated G(q)alpha or G(13)alpha activation also potently stimulates the tyrosine kinase PYK2. In this study we tested whether G(q)alpha- and/or G(13)alpha-induced PYK2 activation contributes to GPCR-mediated NF-kappa B activation. Among the GTPase-deficient forms of G alpha tested, G(13)alpha and G(q)alpha most potently stimulated an NF-kappa B-dependent reporter gene. PYK2 activated the same reporter gene and synergized with either G(q)alpha Q209L (QL) or G(13)alpha Q226L (QL). Placing PYK2 upstream of both PI3K and Akt activation, PYK2 activated Akt through a PI3K-dependent pathway, and either a dominant negative form of Akt or the PI3K inhibitor LY294002 blocked PYK2-stimulated NF-kappa B-dependent transcription. Placing PYK2 downstream of G-protein activation, a kinase-dead form of PYK2, PYK2 (KD), blocked NF-kappa B-dependent transcription triggered by signaling through the muscarinic receptor type 1 and either G(q)alpha QL or G(13)alpha QL. PYK2 (KD) also blocked Akt activation by the same stimuli. These results indicate that PYK2 can link G-protein activation through PI3K, Akt, and I kappa B kinase to NF-kappa B activation.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Quinase 2 de Adesão Focal , Células HeLa , Humanos , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt
4.
J Biol Chem ; 276(26): 24293-300, 2001 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-11294858

RESUMO

Regulator of G-protein signaling 3 (RGS3) enhances the intrinsic rate at which Galpha(i) and Galpha(q) hydrolyze GTP to GDP, thereby limiting the duration in which GTP-Galpha(i) and GTP-Galpha(q) can activate effectors. Since GDP-Galpha subunits rapidly combine with free Gbetagamma subunits to reform inactive heterotrimeric G-proteins, RGS3 and other RGS proteins may also reduce the amount of Gbetagamma subunits available for effector interactions. Although RGS6, RGS7, and RGS11 bind Gbeta(5) in the absence of a Ggamma subunit, RGS proteins are not known to directly influence Gbetagamma signaling. Here we show that RGS3 binds Gbeta(1)gamma(2) subunits and limits their ability to trigger the production of inositol phosphates and the activation of Akt and mitogen-activated protein kinase. Co-expression of RGS3 with Gbeta(1)gamma(2) inhibits Gbeta(1)gamma(2)-induced inositol phosphate production and Akt activation in COS-7 cells and mitogen-activated protein kinase activation in HEK 293 cells. The inhibition of Gbeta(1)gamma(2) signaling does not require an intact RGS domain but depends upon two regions in RGS3 located between acids 313 and 390 and between 391 and 458. Several other RGS proteins do not affect Gbeta(1)gamma(2) signaling in these assays. Consistent with the in vivo results, RGS3 inhibits Gbetagamma-mediated activation of phospholipase Cbeta in vitro. Thus, RGS3 may limit Gbetagamma signaling not only by virtue of its GTPase-activating protein activity for Galpha subunits, but also by directly interfering with the activation of effectors.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP , Subunidades gama da Proteína de Ligação ao GTP , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas Ativadoras de GTPase , Proteínas Heterotriméricas de Ligação ao GTP/antagonistas & inibidores , Fosfatos de Inositol/biossíntese , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas RGS/fisiologia , Animais , Sítios de Ligação , Células COS , Linhagem Celular , Ativação Enzimática , Humanos , Isoenzimas/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno , Fosfolipase C beta , Testes de Precipitina , Proteínas Proto-Oncogênicas c-akt , Proteínas RGS/química , Proteínas RGS/genética , Transfecção , Fosfolipases Tipo C/antagonistas & inibidores
5.
Nature ; 409(6823): 1051-5, 2001 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-11234015

RESUMO

The heterotrimeric G-protein Gs couples cell-surface receptors to the activation of adenylyl cyclases and cyclic AMP production (reviewed in refs 1, 2). RGS proteins, which act as GTPase-activating proteins (GAPs) for the G-protein alpha-subunits alpha(i) and alpha(q), lack such activity for alpha(s) (refs 3-6). But several RGS proteins inhibit cAMP production by Gs-linked receptors. Here we report that RGS2 reduces cAMP production by odorant-stimulated olfactory epithelium membranes, in which the alpha(s) family member alpha(olf) links odorant receptors to adenylyl cyclase activation. Unexpectedly, RGS2 reduces odorant-elicited cAMP production, not by acting on alpha(olf) but by inhibiting the activity of adenylyl cyclase type III, the predominant adenylyl cyclase isoform in olfactory neurons. Furthermore, whole-cell voltage clamp recordings of odorant-stimulated olfactory neurons indicate that endogenous RGS2 negatively regulates odorant-evoked intracellular signalling. These results reveal a mechanism for controlling the activities of adenylyl cyclases, which probably contributes to the ability of olfactory neurons to discriminate odours.


Assuntos
Adenilil Ciclases/metabolismo , Isoenzimas/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Proteínas RGS/fisiologia , Transdução de Sinais , Inibidores de Adenilil Ciclases , Adenilil Ciclases/genética , Animais , Linhagem Celular , Membrana Celular/enzimologia , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Ativação Enzimática , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Técnicas de Patch-Clamp , Ratos , Proteínas Recombinantes , Transfecção
6.
Mol Pharmacol ; 58(4): 719-28, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10999941

RESUMO

Many Regulators of G protein Signaling (RGS) proteins accelerate the intrinsic GTPase activity of G(ialpha) and G(qalpha)-subunits [i.e., behave as GTPase-activating proteins (GAPs)] and several act as G(qalpha)-effector antagonists. RGS3, a structurally distinct RGS member with a unique N-terminal domain and a C-terminal RGS domain, and an N-terminally truncated version of RGS3 (RGS3CT) both stimulated the GTPase activity of G(ialpha) (except G(zalpha)) and G(qalpha) but not that of G(salpha) or G(12alpha). RGS3 and RGS3CT had G(qalpha) GAP activity similar to that of RGS4. RGS3 impaired signaling through G(q)-linked receptors, although RGS3CT invariably inhibited better than did full-length RGS3. RGS3 potently inhibited G(qalpha)Q209L- and G(11alpha)Q209L-mediated activation of a cAMP-response element-binding protein reporter gene and G(qalpha)Q209L induced inositol phosphate production, suggesting that RGS3 efficiently blocks G(qalpha) from activating its downstream effector phospholipase C-beta. Whereas RGS2 and to a lesser extent RGS10 also inhibited signaling by these GTPase-deficient G proteins, other RGS proteins including RGS4 did not. Mutation of residues in RGS3 similar to those required for RGS4 G(ialpha) GAP activity, as well as several residues N terminal to its RGS domain impaired RGS3 function. A greater percentage of RGS3CT localized at the cell membrane than the full-length version, potentially explaining why RGS3CT blocked signaling better than did full-length RGS3. Thus, RGS3 can impair Gi- (but not Gz-) and Gq-mediated signaling in hematopoietic and other cell types by acting as a GAP for G(ialpha) and G(qalpha) subfamily members and as a potent G(qalpha) subfamily effector antagonist.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP , Proteínas Ativadoras de GTPase , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas RGS/fisiologia , Células Cultivadas , Ativação Enzimática , GTP Fosfo-Hidrolases/deficiência , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Células HeLa , Humanos , Células Jurkat , Células K562 , Proteínas RGS/metabolismo , Receptor Muscarínico M1 , Receptores Adrenérgicos beta/metabolismo , Receptores Muscarínicos/metabolismo , Transdução de Sinais
7.
Oncogene ; 19(7): 933-42, 2000 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-10702802

RESUMO

Radiation resistance is a hallmark of human melanoma, and yet mechanisms underlying this resistance are not well understood. We recently established the role of ATF2 in this process, suggesting that stress kinases, which contribute to regulation of ATF2 stability and activity, play an important role in the acquisition of such resistance. Here we demonstrate that changes in the expression and respective activities of TRAF2/GCK occur during melanoma development and regulate its sensitivity to UV-induced apoptosis. Comparing early- and late-stage melanoma cells revealed low expression of TRAF2 and GCK in early-stage melanoma, which coincided with poor resistance to UV-induced, TNF-mediated apoptosis; forced expression of GCK alone or in combination with TRAF2 efficiently increased JNK and NF-kappaB activities, which coincided with increased protection against apoptosis. Conversely, forced expression of the dominant negative form of TRAF2 or GCK in late-stage melanoma cells reduced NF-kappaB activity and decreased Fas expression, resulting in a lower degree of UV-induced, Fas-mediated cell death. Our results illustrate a mechanism in which protection from, or promotion of, UV-induced melanoma cell death depends on the nature of the apoptotic cascade (TNF or Fas) and on the availability of TRAF2/GCK, whose expression increases during melanoma progression. Oncogene (2000) 19, 933 - 942.


Assuntos
Apoptose/efeitos da radiação , Melanoma/metabolismo , Melanoma/patologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas/fisiologia , Tolerância a Radiação , Raios Ultravioleta , Centro Germinativo/enzimologia , Centro Germinativo/efeitos da radiação , Quinases do Centro Germinativo , Humanos , Melanoma/enzimologia , NF-kappa B/fisiologia , Estadiamento de Neoplasias , Biossíntese de Proteínas , Transdução de Sinais/efeitos da radiação , Fator 2 Associado a Receptor de TNF , Células Tumorais Cultivadas
8.
J Immunol ; 164(4): 1829-38, 2000 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-10657631

RESUMO

Regulator of G protein signaling (RGS) proteins modulate signaling through pathways that use heterotrimeric G proteins as transducing elements. RGS1 is expressed at high levels in certain B cell lines and can be induced in normal B cells by treatment with TNF-alpha. To determine the signaling pathways that RGS1 may regulate, we examined the specificity of RGS1 for various G alpha subunits and assessed its effect on chemokine signaling. G protein binding and GTPase assays revealed that RGS1 is a Gi alpha and Gq alpha GTPase-activating protein and a potential G12 alpha effector antagonist. Functional studies demonstrated that RGS1 impairs platelet activating factor-mediated increases in intracellular Ca+2, stromal-derived factor-1-induced cell migration, and the induction of downstream signaling by a constitutively active form of G12 alpha. Furthermore, germinal center B lymphocytes, which are refractory to stromal-derived factor-1-triggered migration, express high levels of RGS1. These results indicate that RGS proteins can profoundly effect the directed migration of lymphoid cells.


Assuntos
Linfócitos B/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteínas/fisiologia , Proteínas RGS , Transdução de Sinais/imunologia , Animais , Linfócitos B/imunologia , Células COS , Regulação para Baixo/imunologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas Ativadoras de GTPase/fisiologia , Humanos , Células Jurkat , Células K562 , Ligação Proteica/imunologia , Biossíntese de Proteínas , Ratos , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/fisiologia , Células Tumorais Cultivadas
9.
Blood ; 95(3): 776-82, 2000 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-10648385

RESUMO

STE20-related kinases play significant regulatory roles in a range of cellular responses to environmental stimuli. GCKR (also referred to as KHS1) is a serine/threonine protein kinase that has an STE20-like protein kinase domain and that stimulates the stress-activated protein kinase (SAPK, also referred to as Jun kinase or JNK) pathway. GCKR has a large C-terminal regulatory domain that provides sites for interactions with other proteins. Adaptor proteins mediate the interactions between signaling molecules. In this study we showed that the adaptor proteins Crk and CrkL associated with GCKR. When Crk-I, Crk-II, or CrkL was transiently expressed in HEK 293T cells along with GCKR, each coimmunoprecipitated with GCKR. Furthermore, in the Bcr-Abl transformed cell line, K562 endogenous GCKR and CrkL coimmunoprecipitated, indicating a constitutive association. Detection of the CrkL-GCKR interaction required the SH3 domains of CrkL and 2 regions in GCKR-1 between amino acids 387 and 395 that contains a consensus SH3 binding motif and the other between amino acids 599 and 696. Crk or CrkL overexpression increased GCKR catalytic activity. A dominant negative form of Ras abolished Crk- or CrkL-induced GCKR activation, suggesting a dependence on Ras activation for their activation of GCKR. Finally, we showed impairment of the known ability of CrkL to activate the SAPK pathway by a catalytically inactive form of GCKR or by a GCKR antisense construct. Thus, GCKR associates with other proteins through interactions mediated by SH2/SH3 adaptor proteins, which can lead to GCKR and SAPK activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Nucleares/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Transdução de Sinais/fisiologia , Linhagem Celular , Ativação Enzimática , Regulação da Expressão Gênica , Genes Dominantes , Genes ras , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Células K562 , Substâncias Macromoleculares , Proteínas Nucleares/genética , Oligonucleotídeos Antissenso/farmacologia , Fragmentos de Peptídeos/farmacologia , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/química , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-crk , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Proteínas Recombinantes de Fusão/fisiologia , Transfecção , Domínios de Homologia de src
10.
Mol Cell Biol ; 19(10): 6665-72, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10490605

RESUMO

Tumor necrosis factor (TNF) receptor-associated factors (TRAFs) are mediators of many members of the TNF receptor superfamily and can activate both the nuclear factor kappaB (NF-kappaB) and stress-activated protein kinase (SAPK; also known as c-Jun N-terminal kinase) signal transduction pathways. We previously described the involvement of a TRAF-interacting molecule, TRAF-associated NF-kappaB activator (TANK), in TRAF2-mediated NF-kappaB activation. Here we show that TANK synergized with TRAF2, TRAF5, and TRAF6 but not with TRAF3 in SAPK activation. TRAF2 and TANK individually formed weak interactions with germinal center kinase (GCK)-related kinase (GCKR). However, when coexpressed, they formed a strong complex with GCKR, thereby providing a potential mechanism for TRAF and TANK synergy in GCKR-mediated SAPK activation, which is important in TNF family receptor signaling. Our results also suggest that TANK can form potential intermolecular as well as intramolecular interactions between its amino terminus and carboxyl terminus. This study suggests that TANK is a regulatory molecule controlling the threshold of NF-kappaB and SAPK activities in response to activation of TNF receptors. In addition, CD40 activated endogenous GCKR in primary B cells, implicating GCK family proteins in CD40-mediated B-cell functions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Linfócitos/metabolismo , MAP Quinase Quinase 4 , MAP Quinase Quinase Quinase 1 , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Linfócitos B/metabolismo , Antígenos CD40/metabolismo , Ativação Enzimática , Centro Germinativo/citologia , Quinases do Centro Germinativo , Humanos , MAP Quinase Quinase Quinases/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Tonsila Palatina/citologia , Fragmentos de Peptídeos/metabolismo , Proteínas/genética , Linfócitos T/metabolismo , Fator 2 Associado a Receptor de TNF , Fator 5 Associado a Receptor de TNF , Fator 6 Associado a Receptor de TNF
11.
Nat Genet ; 23(1): 71-5, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10471502

RESUMO

In most mammals the pancreas develops from the foregut endoderm as ventral and dorsal buds. These buds fuse and develop into a complex organ composed of endocrine, exocrine and ductal components. This developmental process depends upon an integrated network of transcription factors. Gene targeting experiments have revealed critical roles for Pdx1, Isl1, Pax4, Pax6 and Nkx2-2 (refs 3,4,5,6,7, 8,9,10). The homeobox gene HLXB9 (encoding HB9) is prominently expressed in adult human pancreas, although its role in pancreas development and function is unknown. To facilitate its study, we isolated the mouse HLXB9 orthologue, Hlxb9. During mouse development, the dorsal and ventral pancreatic buds and mature beta-cells in the islets of Langerhans express Hlxb9. In mice homologous for a null mutation of Hlxb9, the dorsal lobe of the pancreas fails to develop. The remnant Hlxb9-/- pancreas has small islets of Langerhans with reduced numbers of insulin-producing beta-cells. Hlxb9-/- beta-cells express low levels of the glucose transporter Glut2 and homeodomain factor Nkx 6-1. Thus, Hlxb9 is key to normal pancreas development and function.


Assuntos
Proteínas de Homeodomínio/genética , Ilhotas Pancreáticas/anormalidades , Proteínas do Tecido Nervoso , Pâncreas/anormalidades , Fatores de Transcrição/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Proteínas do Olho , Fatores de Transcrição Forkhead , Genótipo , Glucagon/metabolismo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/metabolismo , Humanos , Imuno-Histoquímica , Insulina/metabolismo , Ilhotas Pancreáticas/embriologia , Ilhotas Pancreáticas/metabolismo , Proteínas com Homeodomínio LIM , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Neurônios Motores/metabolismo , Proteínas Nucleares , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados , Pâncreas/embriologia , Pâncreas/metabolismo , Polipeptídeo Pancreático/metabolismo , Proteínas Repressoras , Somatostatina/metabolismo , Fatores de Tempo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra
12.
J Immunol ; 163(6): 3279-85, 1999 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-10477597

RESUMO

TNF-induced activation of stress activated protein kinases (SAPKs, Jun NH2-terminal kinases) requires TNF receptor associated factor 2 (TRAF2). TRAF2 is a potent activator of a 95-kDa serine/threonine kinase termed germinal center kinase related (GCKR, also referred to as KHS1), which signals activation of the SAPK pathway. Consistent with a role for GCKR in TNF- induced SAPK activation, a kinase-inactive mutant of GCKR is a dominant negative inhibitor of TRAF2-induced SAPK activation. Here we show that TRAF2 interacts with GCKR. This interaction depended upon the TRAF domain of TRAF2 and the C-terminal 150 aa of GCKR. The full activation of GCKR by TRAF2 required the TRAF2 RING finger domain. TNF treatment of a T cell line, Jurkat, increased both GCRK and SAPK activity and enhanced the coimmunoprecipitation of GCKR with TRAF2. Similar results were found with the B cell line HS-Sultan. These findings are consistent with a model whereby TNF signaling results in the recruitment and activation of GCKR by TRAF2, which leads to SAPK activation.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Centro Germinativo/enzimologia , Proteínas Quinases Ativadas por Mitógeno , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/fisiologia , Receptores do Fator de Necrose Tumoral/fisiologia , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/fisiologia , Sequência de Aminoácidos , Domínio Catalítico/imunologia , Linhagem Celular , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Quinases do Centro Germinativo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Células Jurkat , Dados de Sequência Molecular , NF-kappa B/metabolismo , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/química , Proteínas/genética , Proteínas/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Deleção de Sequência , Transdução de Sinais/genética , Fator 2 Associado a Receptor de TNF , Fator de Necrose Tumoral alfa/genética
13.
Blood ; 94(4): 1382-92, 1999 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-10438726

RESUMO

CD22 is a B-cell-specific adhesion molecule that modulates BCR-mediated signal transduction. Ligation of human CD22 with monoclonal antibodies (MoAbs) that block the ligand binding site triggers rapid tyrosine phosphorylation of CD22 and primary B-cell proliferation. Because extracellular signal-regulated kinases (ERKs) couple upstream signaling pathways to gene activation and are activated by B-cell antigen receptor (BCR) signaling, we examined whether CD22 ligation also activated ERKs and/or modified BCR-induced ERK activation. Ligation of CD22 on either primary B cells or B-cell lines failed to significantly activate the mitogen activated protein kinase (MAPK) ERK-2, but did activate the stress-activated protein kinases (SAPKs; c-jun NH2-terminal kinases or JNKs). In contrast, BCR ligation resulted in ERK-2 activation without significant SAPK activation. Concurrent ligation of CD22 and BCR enhanced BCR-mediated ERK-2 activation without appreciably modulating CD22-induced SAPK activation. Consistent with its induction of SAPK activity, there was a marked increase in nuclear extracts of activator protein-1 (AP-1) and c-jun levels within 2 hours of exposure of primary B cells to the CD22 MoAb. Despite their differences in ERK activation, both CD22 and BCR ligation triggered several Burkitt lymphoma cell lines to undergo apoptosis, and the 2 stimuli together induced greater cell death than either signal alone. The pro-apoptotic effects were CD22-blocking MoAb-specific and dose-dependent. Examination of expression levels of Bcl-2 protoncogene family members (Bcl-2, Bcl-x(L), Mcl-1, and Bax) showed a downregulation of Bcl-x(L) and Mcl-1 after CD22 ligation. This study provides a plausible mechanism to explain how CD22 and BCR signaling can costimulate B-cell proliferation and induce apoptosis in Burkitt lymphoma cell lines.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos B/imunologia , Linfócitos B/imunologia , Moléculas de Adesão Celular , Lectinas , Proteínas Quinases/imunologia , Transdução de Sinais/imunologia , Células Cultivadas , Humanos , Ativação Linfocitária/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico
14.
J Immunol ; 162(5): 2677-82, 1999 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-10072511

RESUMO

The newly recognized regulators of G protein signaling (RGS) attenuate heterotrimeric G protein signaling pathways. We have cloned an IL-2-induced gene from human T cells, cytokine-responsive gene 1, which encodes a member of the RGS family, RGS16. The RGS16 protein binds Gialpha and Gqalpha proteins present in T cells, and inhibits Gi- and Gq-mediated signaling pathways. By comparison, the mitogen-induced RGS2 inhibits Gq but not Gi signaling. Moreover, the two RGS genes exhibit marked differences in expression patterns. The IL-2-induced expression of the RGS16 gene in T cells is suppressed by elevated cAMP, whereas the RGS2 gene shows a reciprocal pattern of regulation by these stimuli. Because the mitogen and cytokine receptors that trigger expression of RGS2 and RGS16 in T cells do not activate heterotrimeric G proteins, these RGS proteins and the G proteins that they regulate may play a heretofore unrecognized role in T cell functional responses to Ag and cytokine activation.


Assuntos
Proteínas de Ligação ao GTP/fisiologia , Linfócitos/fisiologia , Proteínas RGS , Células Cultivadas , AMP Cíclico/biossíntese , Humanos , Proteínas/genética , Proteínas/fisiologia , Receptores de Interleucina-2/fisiologia
15.
Blood ; 93(4): 1338-45, 1999 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-9949177

RESUMO

The Bcr-Abl oncogene, found in Philadelphia chromosome-positive myelogenous leukemia (CML), activates Ras and triggers the stress-activated protein kinase (SAPK or Jun NH2-terminal kinase [JNK]) pathway. Interruption of Ras or SAPK activation dramatically reduces Bcr-Abl-mediated transformation. Here, we report that Bcr-Abl through a Ras-dependent pathway signals the serine/threonine protein kinase GCKR (Germinal Center Kinase Related) leading to SAPK activation. Either an oncogenic form of Ras or Bcr-Abl enhances GCKR catalytic activity and its activation of SAPK, whereas inhibition of GCKR impairs Bcr-Abl-induced SAPK activation. Bcr-Abl mutants that are impaired for GCKR activation are also unable to activate SAPK. Consistent with GCKR being a functional target in CML, GCKR is constitutively active in CML cell lines and found in association with Bcr-Abl. Our results indicate that GCKR is a downstream target of Bcr-Abl and strongly implicate GCKR as a mediator of Bcr-Abl in its transformation of cells.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas Quinases Ativadas por Mitógeno , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas de Fusão bcr-abl/genética , Regulação Neoplásica da Expressão Gênica , Quinases do Centro Germinativo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Células Tumorais Cultivadas , Proteínas ras/genética
16.
Blood ; 92(4): 1308-16, 1998 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-9694719

RESUMO

The paired box containing gene PAX-5 encodes the transcription factor BSAP (B-cell-specific activator protein), which plays a key role in B-lymphocyte development. Despite its known involvement in a rare subtype of non-Hodgkin's lymphoma (NHL), a detailed examination of BSAP expression in NHL has not been previously reported. In this study, we analyzed normal and malignant lymphoid tissues and cell lines, including 102 cases of B-cell NHL, 23 cases of T- and null-cell NHL, and 18 cases of Hodgkin's disease. Normal lymphoid tissues showed strong nuclear BSAP expression in mantle zone B cells, less intense reactivity in follicular center B cells, and no expression in cells of the T-cell-rich zones. Monocytoid B cells showed weak expression, whereas plasma cells and extrafollicular large transformed B cells were negative. Of the 102 B-cell NHLs, 83 (81%) demonstrated BSAP expression. All of the 13 (100%) B-cell chronic lymphocytic leukemias (B-CLLs), 21 of (100%) mantle cells (MCLs), and 20 of 21 (95%) follicular lymphomas (FLs) were positive. Moderate staining intensities were found in most B-CLL and FL cases, whereas most MCLs showed strong reactions, paralleling the strong reactivity of nonmalignant mantle cells. Eight of 12 (67%) marginal zone lymphoma cases showed negative or low BSAP levels, and 17 of 24 (71%) large B-cell lymphomas displayed moderate to strong expression. None of the 23 T- and null-cell lymphomas reacted with the BSAP antisera, whereas in Hodgkin's disease, 2 of 4 (50%) nodular lymphocytic predominance and 5 of 14 (36%) classical cases showed weak nuclear or nucleolar BSAP reactions in a fraction of the tumor cells. Western blot analysis showed a 52-kD BSAP band in B-cell lines, but not in non-B-cell or plasma cell lines. We conclude that BSAP expression is largely restricted to lymphomas of B-cell lineage and that BSAP expression varies in B-cell subsets and subtypes of B-cell NHL. The high levels of BSAP, especially those found in large-cell lymphomas and in some follicular lymphomas, may be a consequence of deregulated gene expression and suggest a possible involvement of PAX-5 in certain B-cell malignancies. This is a US government work. There are no restrictions on its use.


Assuntos
Subpopulações de Linfócitos B/metabolismo , Proteínas de Ligação a DNA/biossíntese , Regulação da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/metabolismo , Linfoma de Células B/metabolismo , Proteínas de Neoplasias/biossíntese , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/biossíntese , Fatores de Transcrição/biossíntese , Antígenos CD20/análise , Biomarcadores Tumorais/análise , Linhagem da Célula , Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Genes Homeobox , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Doença de Hodgkin/metabolismo , Doença de Hodgkin/patologia , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma de Células B/classificação , Linfoma de Células B/patologia , Linfoma Folicular/metabolismo , Linfoma Folicular/patologia , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Linfoma de Células T/metabolismo , Linfoma de Células T/patologia , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Fator de Transcrição PAX5 , Fatores de Transcrição/genética , Células Tumorais Cultivadas
17.
J Biol Chem ; 273(35): 22681-92, 1998 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-9712898

RESUMO

Tumor necrosis factor (TNF) elicits a diverse array of inflammatory responses through engagement of its type-1 receptor (TNFR1). Many of these responses require de novo gene expression mediated by the activator protein-1 (AP-1) transcription factor. We investigated the mechanism by which TNFR1 recruits the stress-activated protein kinases (SAPKs) and the p38s, two mitogen-activated protein kinase (MAPK) families that together regulate AP-1. We show that the human SPS1 homologue germinal center kinase (GCK) can interact in vivo with the TNFR1 signal transducer TNFR-associated factor-2 (TRAF2) and with MAPK/ERK kinase kinase 1 (MEKK1), a MAPK kinase kinase (MAPKKK) upstream of the SAPKs, thereby coupling TRAF2 to the SAPKs. Receptor interacting protein (RIP) is a second TNFR signal transducer which can bind TRAF2. We show that RIP activates both p38 and SAPK; and that TRAF2 activation of p38 requires RIP. We also demonstrate that the RIP noncatalytic intermediate domain associates in vivo with an endogenous MAPKKK that can activate the p38 pathway in vitro. Thus, TRAF2 initiates SAPK and p38 activation by binding two proximal protein kinases: GCK and RIP. GCK and RIP, in turn, signal by binding MAPKKKs upstream of the SAPKs and p38s.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Sítios de Ligação , Ativação Enzimática , Humanos , Ligação Proteica , Proteínas/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Proteínas Recombinantes/metabolismo , Fator 2 Associado a Receptor de TNF
18.
J Biol Chem ; 273(29): 18405-10, 1998 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-9660808

RESUMO

The members of a recently identified protein family termed regulators of G-protein signaling (RGS) act as GTPase-activating proteins for certain Galpha subunits in vitro, but their physiological effects in cells are uncertain in the face of similar biochemical activity and overlapping patterns of tissue expression. Consistent with its activity in in vitro GTPase-activating protein assays, RGS4 interacts efficiently with endogenous proteins of the Gi and Gq subclasses of Galpha subunits but not with G12alpha or Gsalpha. Unlike other RGS proteins such as RGS9, RGS-GAIP, and Sst2p, which have been reported to be largely membrane-associated, a majority of cellular RGS4 is found as a soluble protein in the cytoplasm. However, the expression of a GTPase-deficient Gialpha subunit (Gialpha2-Q204L) resulted in the translocation of both wild type RGS4 and a non-Gialpha-binding mutant (L159F) to the plasma membrane. These data suggest that RGS4 may be recruited to the plasma membrane indirectly by G-protein activation and that multiple RGS proteins within a given cell might be differentially localized to determine a physiologic response to a G-protein-linked stimulus.


Assuntos
Membrana Celular/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Proteínas de Ligação ao GTP/biossíntese , Proteínas/metabolismo , Proteínas Proto-Oncogênicas/biossíntese , Proteínas RGS , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Citoplasma/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP , Proteínas de Ligação ao GTP/metabolismo , Neurônios/metabolismo , Células PC12 , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Transfecção
19.
Blood ; 90(10): 3984-95, 1997 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-9354667

RESUMO

CD20 is a B-lineage-specific gene expressed at the pre-B-cell stage of B-cell development that disappears on differentiation to plasma cells. As such, it serves as an excellent paradigm for the study of lineage and developmental stage-specific gene expression. Using in vivo footprinting we identified two sites in the promoter at -45 and -160 that were occupied only in CD20+ B cells. The -45 site is an E box that binds basic helix-loop-helix-zipper proteins whereas the -160 site is a composite PU.1 and Pip binding site. Transfection studies with reporter constructs and various expression vectors verified the importance of these sites. The composite PU.1 and Pip site likely accounts for both lineage and stage-specific expression of CD20 whereas the CD20 E box binding proteins enhance overall promoter activity and may link the promoter to a distant enhancer.


Assuntos
Antígenos CD20/genética , Linfócitos B/imunologia , Linfócitos B/patologia , Linhagem da Célula/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Antígenos CD20/imunologia , Sequência de Bases , Sítios de Ligação , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Sequências Hélice-Alça-Hélice , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Células Tumorais Cultivadas
20.
J Immunol ; 159(3): 1284-92, 1997 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-9233624

RESUMO

CD19 expression begins at the pro-B cell stage of B cell development. As such it serves as a good prototype for B cell-specific genes whose expression begins shortly after lineage commitment. To understand the molecular mechanisms controlling CD19 gene expression, we isolated and functionally characterized the CD19 promoter using in vivo footprinting, gel shift assays, and transfection studies. Reporter constructs spanning portions of the promoter identified a region between -85 and -200 that produced high levels of reporter gene activity in lymphoid cells. In vivo footprinting identified protected regions over the known high affinity B cell lineage-specific activator protein (BSAP) site, the low affinity BSAP site, a SP1/Egr-1 site termed the CD19 GC box, and two novel sites named the AT box and PyG box. Phorbol ester treatment of a pre-B cell line up-regulated CD19 expression, induced Egr-1, and enhanced the footprint over the GC box. Gel shift assays demonstrated SP1 and Egr-1 binding to the CD19 GC box, while unknown nuclear proteins bound the PyG and AT boxes. Mutations in the AT box or in the BSAP sites did not affect CD19 reporter construct activity, while a mutation of the GC box reduced it modestly, and a PyG box mutation reduced it dramatically. BSAP failed to trans-activate CD19 promoter constructs in B cells or non-B cells, suggesting that cis elements such as the PyG and GC boxes are also necessary for high level CD19 promoter expression.


Assuntos
Antígenos CD19/genética , Pegada de DNA , Proteínas de Ligação a DNA/fisiologia , Proteínas Imediatamente Precoces , Regiões Promotoras Genéticas/imunologia , Fator de Transcrição Sp1/fisiologia , Fatores de Transcrição/fisiologia , Antígenos CD19/metabolismo , Linfócitos B/química , Composição de Bases , Sequência de Bases , Sítios de Ligação/genética , Análise Mutacional de DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína 1 de Resposta de Crescimento Precoce , Eletroforese em Gel de Poliacrilamida , Genes Reporter/imunologia , Humanos , Linfoma de Células B , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fator de Transcrição PAX5 , Tonsila Palatina , Fator de Transcrição Sp1/metabolismo , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA