Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 22(2): 223-32, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16466929

RESUMO

Mild cognitive impairment (MCI) is generally referred to the transitional zone between normal cognitive function and early dementia or clinically probable Alzheimer's disease (AD). Oxidative stress plays a significant role in AD and is increased in the superior/middle temporal gyri of MCI subjects. Because AD involves hippocampal-resident memory dysfunction, we determined protein oxidation and identified the oxidized proteins in the hippocampi of MCI subjects. We found that protein oxidation is significantly increased in the hippocampi of MCI subjects when compared to age- and sex-matched controls. By using redox proteomics, we determined the oxidatively modified proteins in MCI hippocampus to be alpha-enolase (ENO1), glutamine synthetase (GLUL), pyruvate kinase M2 (PKM2) and peptidyl-prolyl cis/trans isomerase 1 (PIN1). The interacteome of these proteins revealed that these proteins functionally interact with SRC, hypoxia-inducible factor 1, plasminogen (PLG), MYC, tissue plasminogen activator (PLAT) and BCL2L1. Moreover, the interacteome indicates the functional involvement of energy metabolism, synaptic plasticity and mitogenesis/proliferation. Therefore, oxidative inactivation of ENO1, GLUL and PIN1 may alter these cellular processes and lead to the development of AD from MCI. We conclude that protein oxidation plays a significant role in the development of AD from MCI and that the oxidative inactivation of ENO1, GLUL, PKM2 and PIN1 is involved in the progression of AD from MCI. The current study provides a framework for future studies on the development of AD from MCI relevant to oxidative stress.


Assuntos
Doença de Alzheimer/enzimologia , Transtornos Cognitivos/enzimologia , Hipocampo/enzimologia , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/fisiopatologia , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Transtornos Cognitivos/fisiopatologia , Proteínas de Ligação a DNA/metabolismo , Metabolismo Energético/fisiologia , Ativação Enzimática/fisiologia , Feminino , Glutamato-Amônia Ligase/metabolismo , Hipocampo/fisiopatologia , Humanos , Masculino , Peptidilprolil Isomerase de Interação com NIMA , Plasticidade Neuronal/fisiologia , Oxirredução , Peptidilprolil Isomerase/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteômica , Piruvato Quinase/metabolismo , Proteínas Supressoras de Tumor/metabolismo
2.
J Alzheimers Dis ; 7(1): 15-24, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15750211

RESUMO

Impaired tau catabolism may contribute to tau accumulation and aggregation in Alzheimer's disease and neurofibrillary tangle formation. This study examined the effects of proteasome and calpain inhibition on tau levels and turnover in primary rat hippocampal neurons and differentiated SH-SY5Y human neuroblastoma cells. Administration of proteasome (MG-115, lactacystin) or calpain (MDL28170) inhibitors for up to 24 hours did not alter tau levels in differentiated SH-SY5Y cells or rat hippocampal neurons. Addition of 1 microM and 10 microM MG-115 did not change total tau levels, but did result in increased reactivity of phosphorylation-dependent tau antibodies (PHF-1, CP-13) and decreased Tau-1 immunoreactivity. Administration of cycloheximide to inhibit de novo protein synthesis also did not alter tau levels in the presence or absence of lactacystin. These results demonstrate that although the proteasome and calpain protease systems are capable of degrading tau in cell-free assays, their inhibition does not alter cellular tau levels in primary neurons or differentiated neuroblastoma cells.


Assuntos
Calpaína/metabolismo , Inibição Neural/fisiologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/metabolismo , Neurônios/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Aminopeptidases/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Agregação Celular , Hipocampo/imunologia , Hipocampo/metabolismo , Hipocampo/patologia , Técnicas In Vitro , Neuroblastoma/enzimologia , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Neurônios/imunologia , Ratos , Células Tumorais Cultivadas , Proteínas tau/imunologia
3.
Free Radic Res ; 38(5): 449-58, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15293552

RESUMO

Tricyclodecan-9-yl-xanthogenate (D609) is an inhibitor of phosphatidylcholine-specific phospholipase C, and this agent also has been reported to protect rodents against oxidative damage induced by ionizing radiation. Previously, we showed that D609 mimics glutathione (GSH) functions and that a disulfide is formed upon oxidation of D609 and the resulting dixanthate is a substrate for GSH reductase, regenerating D609. Considerable attention has been focused on increasing the intracellular GSH levels in many diseases, including Alzheimer's disease (AD). Amyloid beta-peptide [Abeta(1-42)], elevated in AD brain, is associated with oxidative stress and toxicity. The present study aimed to investigate the protective effects of D609 on Abeta(1-42)-induced oxidative cell toxicity in cultured neurons. Decreased cell survival in neuronal cultures treated with Abeta(1-42) correlated with increased free radical production measured by dichlorofluorescein fluorescence and an increase in protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (4-hydroxy-2-nonenal) formation. Pretreatment of primary hippocampal cultures with D609 significantly attenuated Abeta(1-42)-induced cytotoxicity, intracellular ROS accumulation, protein oxidation, lipid peroxidation and apoptosis. Methylated D609, with the thiol functionality no longer able to form the disulfide upon oxidation, did not protect neuronal cells against Abeta(1-42)-induced oxidative stress. Our results suggest that D609 exerts protective effects against Abeta(1-42) toxicity by modulating oxidative stress. These results may be of importance for the treatment of AD and other oxidative stress-related diseases.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/toxicidade , Antineoplásicos/uso terapêutico , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Tionas/uso terapêutico , Doença de Alzheimer/patologia , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Fluoresceínas , Fluorescência , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Peroxidação de Lipídeos , Neurônios/citologia , Norbornanos , Substâncias Protetoras , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Tiocarbamatos , Fosfolipases Tipo C/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA