Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(9): e202317675, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38127455

RESUMO

Increasingly, retinal pathologies are being treated with virus-mediated gene therapies. To be able to target viral transgene expression specifically to the pathological regions of the retina with light, we established an in vivo photoactivated gene expression paradigm for retinal tissue. Based on the inducible Cre/lox system, we discovered that ethinylestradiol is a suitable alternative to Tamoxifen as ethinylestradiol is more amenable to modification with photosensitive protecting compounds, i.e., "caging." Identification of ethinylestradiol as a ligand for the mutated human estradiol receptor was supported by in silico binding studies showing the reduced binding of caged ethinylestradiol. Caged ethinylestradiol was injected into the eyes of double transgenic GFAP-CreERT2 mice with a Cre-dependent tdTomato reporter transgene followed by irradiation with light of 450 nm. Photoactivation significantly increased retinal tdTomato expression compared to controls. We thus demonstrated a first step towards the development of a targeted, light-mediated gene therapy for the eyes.


Assuntos
Integrases , Proteína Vermelha Fluorescente , Tamoxifeno , Camundongos , Animais , Humanos , Integrases/genética , Integrases/metabolismo , Camundongos Transgênicos , Transgenes , Tamoxifeno/farmacologia , Terapia Genética
2.
Redox Biol ; 48: 102177, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34773836

RESUMO

Decreased susceptibilities of the human malaria parasite Plasmodium falciparum towards the endoperoxide antimalarial artemisinin are linked to mutations of residue C580 of PfKelch13, a homologue of the redox sensor Keap1 and other vertebrate BTB-Kelch proteins. Here, we addressed whether mutations alter the artemisinin susceptibility by modifying the redox properties of PfKelch13 or by compromising its native fold or abundance. Using selection-linked integration and the glmS ribozyme, efficient down-regulation of PfKelch13 resulted in ring-stage survival rates around 40%. While the loss of the thiol group of C469 or of the potential disulfide bond between residues C580 and C532 had no effect on the artemisinin susceptibility, the thiol group of C473 could not be replaced. Furthermore, we detected two different forms of PfKelch13 with distinct electrophoretic mobilities around 85 and 95 kDa, suggesting an unidentified post-translational modification. We also established a protocol for the production of recombinant PfKelch13 and produced an antibody against the protein. Recombinant PfKelch13 adopted alternative oligomeric states and only two of its seven cysteine residues, C469 and C473, reacted with Ellman's reagent. While common field mutations resulted in misfolded and completely insoluble recombinant PfKelch13, cysteine-to-serine replacements had no effect on the solubility except for residue C473. In summary, in contrast to residues C469, C532, and C580, the surface-exposed thiol group of residue C473 appears to be essential. However, not the redox properties but impaired folding of PfKelch13, resulting in a decreased PfKelch13 abundance, alters the artemisinin susceptibility and is the central parameter for mutant selection.

3.
J Org Chem ; 84(17): 10606-10614, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31414599

RESUMO

Four hybrid double-chain surfactants with a maltose polar head were synthesized. The apolar domain consists of a hydrogenated chain, and a partially fluorinated chain made of a propyl hydrogenated spacer terminated by a perfluorinated core of various lengths. Their water solubility was found to be lower than 1 g/L irrespective of the length of both chains. The self-assembling properties of pure hybrids in water were studied by dynamic light scattering and transmission electron microscopy, which revealed the formation of two populations of aggregates with diameters of 8-50 nm and 80-300 nm. When mixed with the classical detergent n-dodecylmaltoside (DDM), the four hybrids were well soluble and formed small mixed micelles. DDM/hybrid mixtures were further evaluated for the extraction of the full-length, wild-type human GPCR adenosine receptor (A2AR), and the bacterial transporter AcrB. The solubilization of A2AR showed extraction efficiencies ranging from 40 to 70%, while that of AcrB reached 60-90%. Finally, three of the hybrids exhibited significant thermostabilization when present as additives. The derivative with a C12-hydrogenated chain and a C4F9-fluorinated chain emerged as the most potent additive exhibiting both good extraction yields of A2AR and AcrB and thermostabilization of A2AR by ∼7 °C.

4.
Sci Rep ; 9(1): 8725, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217458

RESUMO

In cyanobacteria and plants, VIPP1 plays crucial roles in the biogenesis and repair of thylakoid membrane protein complexes and in coping with chloroplast membrane stress. In chloroplasts, VIPP1 localizes in distinct patterns at or close to envelope and thylakoid membranes. In vitro, VIPP1 forms higher-order oligomers of >1 MDa that organize into rings and rods. However, it remains unknown how VIPP1 oligomerization is related to function. Using time-resolved fluorescence anisotropy and sucrose density gradient centrifugation, we show here that Chlamydomonas reinhardtii VIPP1 binds strongly to liposomal membranes containing phosphatidylinositol-4-phosphate (PI4P). Cryo-electron tomography reveals that VIPP1 oligomerizes into rods that can engulf liposomal membranes containing PI4P. These findings place VIPP1 into a group of membrane-shaping proteins including epsin and BAR domain proteins. Moreover, they point to a potential role of phosphatidylinositols in directing the shaping of chloroplast membranes.


Assuntos
Chlamydomonas reinhardtii/química , Proteínas de Membrana/química , Membranas Artificiais , Fosfatos de Fosfatidilinositol/química , Proteínas de Plantas/química , Multimerização Proteica , Chlamydomonas reinhardtii/metabolismo , Proteínas de Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Plantas/metabolismo
5.
Langmuir ; 35(12): 4287-4295, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30767533

RESUMO

We report herein the design and synthesis of a novel series of alkyl glycoside detergents consisting of a nonionic polar headgroup that comprises two glucose moieties in a branched arrangement (DG), onto which octane-, decane-, and dodecanethiols were grafted leading to ODG, DDG, and DDDG detergents, respectively. Micellization in aqueous solution was studied by isothermal titration calorimetry, 1H NMR spectroscopy, and surface tensiometry. Critical micellar concentration values were found to decrease by a factor of ∼10 for each pair of methylene groups added to the alkyl chain, ranging from ∼0.05 to 9 mM for DDDG and ODG, respectively. Dynamic light scattering and analytical ultracentrifugation sedimentation velocity experiments were used to investigate the size and composition of the micellar aggregates, showing that the aggregation number significantly increased from ∼40 for ODG to ∼80 for DDDG. All new compounds were able to solubilize membrane proteins (MPs) from bacterial membranes, insect cells, as well as the Madin-Darby canine kidney cells. In particular, native human adenosine receptor (A2AR) and bacterial transporter (BmrA) were solubilized efficiently. Striking thermostability improvements of +13 and +8 °C were observed when ODG and DDG were, respectively, applied to wild-type and full-length A2AR. Taken together, this novel detergent series shows promising detergent potency for solubilization and stabilization of membrane proteins (MPs) and thus makes a valuable addition to the chemical toolbox available for extracting and handling these important but challenging MP targets.


Assuntos
Detergentes/química , Glucose/química , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Hidrogenação , Tamanho da Partícula , Estabilidade Proteica , Propriedades de Superfície
6.
Commun Biol ; 1: 154, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30302398

RESUMO

Our meagre understanding of CFTR misfolding and its reversal by small-molecule correctors hampers the development of mechanism-based therapies of cystic fibrosis. Here we exploit a helical-hairpin construct-the simplest proxy of membrane-protein tertiary contacts-containing CFTR's transmembrane helices 3 and 4 and its corresponding disease phenotypic mutant V232D to gain molecular-level insights into CFTR misfolding and drug rescue by the corrector Lumacaftor. Using a single-molecule FRET approach to study hairpin conformations in lipid bilayers, we find that the wild-type hairpin is well folded, whereas the V232D mutant assumes an open conformation in bilayer thicknesses mimicking the endoplasmic reticulum. Addition of Lumacaftor reverses the aberrant opening of the mutant hairpin to restore a compact state as in the wild type. The observed membrane escape of the V232D hairpin and its reversal by Lumacaftor complement cell-based analyses of the full-length protein, thereby providing in vivo and in vitro correlates of CFTR misfolding and drug-action mechanisms.

7.
J Fluoresc ; 28(4): 967-973, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29959578

RESUMO

pH (low) insertion peptide (pHLIP) is a 36-residue peptide derived from the third transmembrane helix of the membrane protein bacteriorhodopsin. The hydrophobicity of this peptide makes it prone to aggregation even at low concentrations, but this has not been studied in detail. In this work, we characterized monomeric and aggregated forms of pHLIP in aqueous solution (pH 8) at low concentrations (~µM) using fluorescence-based approaches, complemented by circular dichroism (CD) spectroscopy. We show here that monomeric and aggregated pHLIP display differential red edge excitation shift (REES) and CD spectra. These spectroscopic features allowed us to show that pHLIP aggregates even at low concentrations. A detailed knowledge of the aggregation behavior of pHLIP under these conditions will be useful for monitoring and quantifying its interaction with membranes.


Assuntos
Fluorescência , Peptídeos/química , Água/química , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/síntese química , Peptídeos/isolamento & purificação , Agregados Proteicos , Soluções , Espectrometria de Fluorescência
8.
Biophys J ; 113(6): 1280-1289, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28629619

RESUMO

Structural and dynamic investigations of unfolded proteins are important for understanding protein-folding mechanisms as well as the interactions of unfolded polypeptide chains with other cell components. In the case of outer-membrane proteins (OMPs), unfolded-state properties are of particular physiological relevance, because these proteins remain unfolded for extended periods of time during their biogenesis and rely on interactions with binding partners to support proper folding. Using a combination of ensemble and single-molecule spectroscopy, we have scrutinized the unfolded state of outer-membrane phospholipase A (OmpLA) to provide a detailed view of its structural dynamics on timescales from nanoseconds to milliseconds. We find that even under strongly denaturing conditions and in the absence of residual secondary structure, OmpLA populates an ensemble of slowly (>100 ms) interconverting and conformationally heterogeneous unfolded states that lack the fast chain-reconfiguration motions expected for an unstructured, fully unfolded chain. The drastically slowed sampling of potentially folding-competent states, as compared with a random-coil polypeptide, may contribute to the slow in vitro folding kinetics observed for many OMPs. In vivo, however, slow intramolecular long-range dynamics might be advantageous for entropically favored binding of unfolded OMPs to chaperones and, by facilitating conformational selection after release from chaperones, for preserving binding-competent conformations before insertion into the outer membrane.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Fosfolipases A1/química , Desdobramento de Proteína , Proteínas da Membrana Bacteriana Externa/metabolismo , Dicroísmo Circular , Escherichia coli , Cinética , Fosfolipases A1/metabolismo , Estrutura Secundária de Proteína , Espectrometria de Fluorescência
10.
Chemistry ; 21(39): 13625-36, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26331633

RESUMO

The binding properties of neutral halogen-bond donors (XB donors) bearing two multidentate Lewis acidic motifs toward halides were investigated. Employing polyfluorinated and polyiodinated terphenyl and quaterphenyl derivatives as anion receptors, we obtained X-ray crystallographic data of the adducts of three structurally related XB donors with tetraalkylammonium chloride, bromide, and iodide. The stability of these XB complexes in solution was determined by isothermal titration calorimetry (ITC), and the results were compared to X-ray analyses as well as to calculated binding patterns in the gas phase. Density functional theory (DFT) calculations on the gas-phase complexes indicated that the experimentally observed distortion of the XB donors during multiple multidentate binding can be reproduced in 1:1 complexes with halides, whereas adducts with two halides show a symmetric binding pattern in the gas phase that is markedly different from the solid state structures. Overall, this study demonstrates the limitations in the transferability of binding data between solid state, solution, and gas phase in the study of complex multidentate XB donors.

11.
Biophys J ; 109(3): 586-94, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26244740

RESUMO

Many proteins are anchored to lipid bilayer membranes through a combination of hydrophobic and electrostatic interactions. In the case of the membrane-bound nonreceptor tyrosine kinase Src from Rous sarcoma virus, these interactions are mediated by an N-terminal myristoyl chain and an adjacent cluster of six basic amino-acid residues, respectively. In contrast with the acyl modifications of other lipid-anchored proteins, the myristoyl chain of Src does not match the host lipid bilayer in terms of chain conformation and dynamics, which is attributed to a tradeoff between hydrophobic burial of the myristoyl chain and repulsion of the peptidic moiety from the phospholipid headgroup region. Here, we combine thermodynamic information obtained from isothermal titration calorimetry with structural data derived from (2)H, (13)C, and (31)P solid-state nuclear magnetic resonance spectroscopy to decipher the hydrophobic and electrostatic contributions governing the interactions of a myristoylated Src peptide with zwitterionic and anionic membranes made from lauroyl (C12:0) or myristoyl (C14:0) lipids. Although the latter are expected to enable better hydrophobic matching, the Src peptide partitions more avidly into the shorter-chain lipid analog because this does not require the myristoyl chain to stretch extensively to avoid unfavorable peptide/headgroup interactions. Moreover, we find that Coulombic and intrinsic contributions to membrane binding are not additive, because the presence of anionic lipids enhances membrane binding more strongly than would be expected on the basis of simple Coulombic attraction.


Assuntos
Bicamadas Lipídicas/química , Proteína Oncogênica pp60(v-src)/química , Peptídeos/química , Sequência de Aminoácidos , Bicamadas Lipídicas/metabolismo , Dados de Sequência Molecular , Ácido Mirístico/química , Proteína Oncogênica pp60(v-src)/metabolismo , Peptídeos/metabolismo , Fosfolipídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Eletricidade Estática , Termodinâmica
12.
Protein Sci ; 24(1): 38-48, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25297828

RESUMO

The interaction of the Bacillus subtilis protein Mistic with the bacterial membrane and its role in promoting the overexpression of other membrane proteins are still matters of debate. In this study, we aimed to determine whether individual helical fragments of Mistic are sufficient for its interaction with membranes in vivo and in vitro. To this end, fragments encompassing each of Mistic's helical segments and combinations of them were produced as GFP-fusions, and their cellular localization was studied in Escherichia coli. Furthermore, peptides corresponding to the four helical fragments were synthesized by solid-phase peptide synthesis, and their ability to acquire secondary structure in a variety of lipids and detergents was studied by circular dichroism spectroscopy. Both types of experiments demonstrate that the third helical fragment of Mistic interacts only with LDAO micelles but does not partition into lipid bilayers. Interestingly, the other three helices interact with membranes in vivo and in vitro. Nevertheless, all of these short sequences can replace full-length Mistic as N-terminal fusions to achieve overexpression of a human G-protein-coupled receptor in E. coli, although with different effects on quantity and quality of the protein produced. A bioinformatic analysis of the Mistic family expanded the number of homologs from 4 to 20, including proteins outside the genus Bacillus. This information allowed us to discover a highly conserved Shine-Dalgarno sequence in the operon mstX-yugO that is important for downstream translation of the potassium ion channel yugO.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Clonagem Molecular/métodos , Escherichia coli/genética , Receptores Acoplados a Proteínas G/genética , Sequência de Aminoácidos , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Micelas , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Regulação para Cima
13.
ChemMedChem ; 9(7): 1458-62, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24668962

RESUMO

PDZ (PSD-95, Dlg, ZO-1) domains are ubiquitous interaction modules that are involved in many cellular signal transduction pathways. Interference with PDZ-mediated protein-protein interactions has important implications in disease-related signaling processes. For this reason, PDZ domains have gained attention as potential targets for inhibitor design and, in the long run, drug development. Herein we report the development of small molecules to probe the function of the PDZ domain from human AF6 (ALL1-fused gene from chromosome 6), which is an essential component of cell-cell junctions. These compounds bind to AF6 PDZ with substantially higher affinity than the peptide (Ile-Gln-Ser-Val-Glu-Val) derived from its natural ligand, EphB2. In intact cells, the compounds inhibit the AF6-Bcr interaction and interfere with epidermal growth factor (EGF)-dependent signaling.


Assuntos
Cinesinas/antagonistas & inibidores , Miosinas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Cinesinas/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Miosinas/metabolismo , Domínios PDZ , Peptídeos/química , Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Receptor EphB2/química , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/metabolismo , Relação Estrutura-Atividade
14.
Biochim Biophys Acta ; 1838(5): 1420-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24388950

RESUMO

GS10 [cyclo-(VKLdYPVKLdYP)] is a synthetic analog of the naturally occurring antimicrobial peptide gramicidin (GS) in which the two positively charged ornithine (Orn) residues are replaced by two positively charged lysine (Lys) residues and the two less polar aromatic phenylalanine (Phe) residues are replaced by the more polar tyrosine (Tyr) residues. In this study, we examine the effects of these seemingly conservative modifications to the parent GS molecule on the physical properties of the peptide, and on its interactions with lipid bilayer model and biological membranes, by a variety of biophysical techniques. We show that although GS10 retains the largely ß-sheet conformation characteristic of GS, it is less structured in both water and membrane-mimetic solvents. GS10 is also more water soluble and less hydrophobic than GS, as predicted, and also exhibits a reduced tendency for self-association in aqueous solution. Surprisingly, GS10 associates more strongly with zwitterionic and anionic phospholipid bilayer model membranes than does GS, despite its greater water solubility, and the presence of anionic phospholipids and cholesterol (Chol) modestly reduces the association of both GS10 and GS to these model membranes. The strong partitioning of both peptides into lipid bilayers is driven by a large favorable entropy change opposed by a much smaller unfavorable enthalpy change. However, GS10 is also less potent than GS at inducing inverted cubic phases in phospholipid bilayer model membranes and at inhibiting the growth of the cell wall-less bacterium Acholeplasma laidlawii B. These results are discussed in terms of the comparative antibiotic and hemolytic activities of these peptides.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Gramicidina/química , Gramicidina/farmacologia , Lipídeos de Membrana/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Acholeplasma laidlawii/efeitos dos fármacos , Membrana Celular/metabolismo , Colesterol/metabolismo , Bicamadas Lipídicas/metabolismo , Modelos Biológicos , Fosfolipídeos/metabolismo , Estrutura Secundária de Proteína , Solubilidade , Relação Estrutura-Atividade , Termodinâmica , Água/química , Água/metabolismo
16.
Mol Biol Cell ; 22(20): 3749-57, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21865594

RESUMO

Superoxide dismutase 1 (Sod1) is an important antioxidative enzyme that converts superoxide anions to hydrogen peroxide and water. Active Sod1 is a homodimer containing one zinc ion, one copper ion, and one disulfide bond per subunit. Maturation of Sod1 depends on its copper chaperone (Ccs1). Sod1 and Ccs1 are dually localized proteins that reside in the cytosol and in the intermembrane space of mitochondria. The import of Ccs1 into mitochondria depends on the mitochondrial disulfide relay system. However, the exact mechanism of this import process has been unclear. In this study we detail the import and folding pathway of Ccs1 and characterize its interaction with the oxidoreductase of the mitochondrial disulfide relay Mia40. We identify cysteines at positions 27 and 64 in domain I of Ccs1 as critical for mitochondrial import and interaction with Mia40. On interaction with Mia40, these cysteines form a structural disulfide bond that stabilizes the overall fold of domain I. Although the cysteines are essential for the accumulation of functional Ccs1 in mitochondria, they are dispensable for the enzymatic activity of cytosolic Ccs1. We propose a model in which the Mia40-mediated oxidative folding of domain I controls the cellular distribution of Ccs1 and, consequently, active Sod1.


Assuntos
Citosol/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Chaperonas Moleculares , Transporte Proteico/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética , Clonagem Molecular , Cisteína/química , Cisteína/metabolismo , Dissulfetos/metabolismo , Escherichia coli , Regulação Fúngica da Expressão Gênica , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Oxirredução , Plasmídeos , Dobramento de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Transdução Genética , Transformação Bacteriana
17.
Cardiovasc Res ; 90(3): 513-20, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21262909

RESUMO

AIMS: In this paper, we tested the hypothesis that different binding affinities of the C-terminus of human cardiac alkali (essential) myosin light chain (A1) isoforms to the IQ1 motif of the myosin lever arm provide a molecular basis for distinct sarcomeric sorting and inotropic activity. METHODS AND RESULTS: We employed circular dichroism and surface plasmon resonance spectroscopy to investigate structural properties, secondary structures, and protein-protein interactions of a recombinant head-rod fragments of rat cardiac ß-myosin heavy chain aa664-915 with alanine-mutated IQ2 domain (rß-MYH(664-915)IQ(ala4)) and A1 isoforms [human atrial (hALC1) and human ventricular (hVLC-1) light chains]. Double epitope-tagging competition was used to monitor the intracellular localization of exogenously introduced hALC-1 and hVLC-1 constructs in neonatal rat cardiomyocytes. Contractile functions of A1 isoforms were investigated by monitoring shortening and intracellular-free Ca(2+) (Fura-2) of adult rat cardiomyocytes infected with adenoviral (Ad) vectors using hALC-1 or ß-galactosidase as expression cassettes. hALC-1 bound more strongly (greater than three-fold lower K(D)) to rß-MYH(664-915) than did hVLC-1. Sorting specificity of A1 isoforms to sarcomeres of cardiomyocytes rose in the order hVLC-1 to hALC-1. Replacement of endogenous VLC-1 by hALC-1 in adult rat cardiomyocytes increased contractility while the systolic Ca(2+) signal remained unchanged. CONCLUSION: Intense myosin binding of hALC-1 provides a mechanism for preferential sarcomeric sorting and Ca(2+)-independent positive inotropic activity.


Assuntos
Miosinas Cardíacas/química , Miosinas Cardíacas/metabolismo , Cadeias Leves de Miosina/química , Cadeias Leves de Miosina/metabolismo , Substituição de Aminoácidos , Animais , Animais Recém-Nascidos , Miosinas Atriais/química , Miosinas Atriais/genética , Miosinas Atriais/metabolismo , Sequência de Bases , Sinalização do Cálcio/fisiologia , Miosinas Cardíacas/genética , Dicroísmo Circular , Primers do DNA/genética , Humanos , Técnicas In Vitro , Masculino , Mutagênese Sítio-Dirigida , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/genética , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Ratos , Ratos Wistar , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sarcômeros/metabolismo , Ressonância de Plasmônio de Superfície , Transfecção , Miosinas Ventriculares/química , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo
18.
Antimicrob Agents Chemother ; 54(10): 4480-3, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20660668

RESUMO

The mode of action of short, nonhelical antimicrobial peptides is still not well understood. Here we show that these peptides interact with ATP and directly inhibit the actions of certain ATP-dependent enzymes, such as firefly luciferase, DnaK, and DNA polymerase. α-Helical and planar or circular antimicrobial peptides did not show such interaction with ATP.


Assuntos
Trifosfato de Adenosina/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Ativação Enzimática/efeitos dos fármacos , Luciferases de Vaga-Lume/metabolismo
19.
Biochem Biophys Res Commun ; 396(4): 939-43, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20460111

RESUMO

The denuded IQ2 domain, i.e. myosin heavy chain not associated with regulatory light chains, exerts an inhibitory effect on myosin ATPase activity. In this study, we elaborated a structural explanation for this auto-inhibitory effect of IQ2 on myosin function. We employed analytical ultracentrifugation, circular dichroism, and surface plasmon resonance spectroscopy to investigate structural and functional properties of a myosin heavy chain (MYH) head-rod fragment aa664-915. MYH(664-915) was monomeric, adopted a closed shape, and bound essential myosin light chains (HIS-MLC-1) with low affinity to IQ1. Deletion of IQ2, however opened MYH(664-915). Four amino acids present in IQ2 could be identified to be responsible for this auto-inhibitory structural effect: alanine mutagenesis of I814, Q815, R819, and W827 stretched MYH(664-915) and increased 30-fold the binding affinity of HIS-MLC-1 to IQ1. In this study we show, that denuded IQ2 favours a closed conformation of myosin with a low HIS-MLC-1 binding affinity. The collapsed structure of myosin with denuded IQ2 could explain the auto-inhibitory effects of IQ2 on enzymatic activity of myosin.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Cadeias Pesadas de Miosina/química , Miosina Tipo II/antagonistas & inibidores , Animais , Dicroísmo Circular , Cadeias Pesadas de Miosina/genética , Cadeias Leves de Miosina/química , Estrutura Terciária de Proteína/genética , Ratos , Deleção de Sequência , Ressonância de Plasmônio de Superfície , Ultracentrifugação
20.
J Mol Biol ; 397(3): 709-23, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20132828

RESUMO

GacH is the solute binding protein (receptor) of the putative oligosaccharide ATP-binding cassette transporter GacFG, encoded in the acarbose biosynthetic gene cluster (gac) from Streptomyces glaucescens GLA.O. In the context of the proposed function of acarbose (acarviosyl-1,4-maltose) as a 'carbophor,' the transporter, in complex with a yet to be identified ATPase subunit, is supposed to mediate the uptake of longer acarbose homologs and acarbose for recycling purposes. Binding assays using isothermal titration calorimetry identified GacH as a maltose/maltodextrin-binding protein with a low affinity for acarbose but with considerable binding activity for its homolog, component 5C (acarviosyl-1,4-maltose-1,4-glucose-1,1-glucose). In contrast, the maltose-binding protein of Salmonella typhimurium (MalE) displays high-affinity acarbose binding. We determined the crystal structures of GacH in complex with acarbose, component 5C, and maltotetraose, as well as in unliganded form. As found for other solute receptors, the polypeptide chain of GacH is folded into two distinct domains (lobes) connected by a hinge, with the interface between the lobes forming the substrate-binding pocket. GacH does not specifically bind the acarviosyl group, but displays specificity for binding of the maltose moiety in the inner part of its binding pocket. The crystal structure of acarbose-loaded MalE showed that two glucose units of acarbose are bound at the same region and position as maltose. A comparative analysis revealed that in GacH, acarbose is buried deeper into the binding pocket than in MalE by exactly one glucose ring shift, resulting in a total of 18 hydrogen-bond interactions versus 21 hydrogen-bond interactions for MalE(acarbose). Since the substrate specificity of ATP-binding cassette import systems is determined by the cognate binding protein, our results provide the first biochemical and structural evidence for the proposed role of GacHFG in acarbose metabolism.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Acarbose/química , Proteínas de Bactérias/química , Maltose/química , Proteínas Periplásmicas de Ligação/química , Salmonella typhimurium/química , Streptomyces/química , Sequência de Aminoácidos , Clonagem Molecular , Cristalografia por Raios X , Proteínas Ligantes de Maltose , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Periplásmicas de Ligação/metabolismo , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA