Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cancers (Basel) ; 16(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38730731

RESUMO

Neuroblastoma (NB), the most common cancer in infants and the most common solid tumor outside the brain in children, grows aggressively and responds poorly to current therapies. We have identified a new drug (opaganib, also known as ABC294640) that modulates sphingolipid metabolism by inhibiting the synthesis of sphingosine 1-phosphate (S1P) by sphingosine kinase-2 and elevating dihydroceramides by inhibition of dihydroceramide desaturase. The present studies sought to determine the potential therapeutic activity of opaganib in cell culture and xenograft models of NB. Cytotoxicity assays demonstrated that NB cells, including cells with amplified MYCN, are effectively killed by opaganib concentrations well below those that accumulate in tumors in vivo. Opaganib was shown to cause dose-dependent decreases in S1P and hexosylceramide levels in Neuro-2a cells, while concurrently elevating levels of dihydroceramides. As with other tumor cells, opaganib reduced c-Myc and Mcl-1 protein levels in Neuro-2a cells, and also reduced the expression of the N-Myc protein. The in vivo growth of xenografts of human SK-N-(BE)2 cells with amplified MYCN was suppressed by oral administration of opaganib at doses that are well tolerated in mice. Combining opaganib with temozolomide plus irinotecan, considered the backbone for therapy of relapsed or refractory NB, resulted in increased antitumor activity in vivo compared with temozolomide plus irinotecan or opaganib alone. Mice did not lose additional weight when opaganib was combined with temozolomide plus irinotecan, indicating that the combination is well tolerated. Opaganib has additive antitumor activity toward Neuro-2a tumors when combined with the checkpoint inhibitor anti-CTLA-4 antibody; however, the combination of opaganib with anti-PD-1 or anti-PD-L1 antibodies did not provide increased antitumor activity over that seen with opaganib alone. Overall, the data demonstrate that opaganib modulates sphingolipid metabolism and intracellular signaling in NB cells and inhibits NB tumor growth alone and in combination with other anticancer drugs. Amplified MYCN does not confer resistance to opaganib, and, in fact, the drug attenuates the expression of both c-Myc and N-Myc. The safety of opaganib has been established in clinical trials with adults with advanced cancer or severe COVID-19, and so opaganib has excellent potential for treating patients with NB, particularly in combination with temozolomide and irinotecan or anti-CTLA-4 antibody.

2.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396999

RESUMO

Fibrosis is a chronic pathology resulting from excessive deposition of extracellular matrix components that leads to the loss of tissue function. Pulmonary fibrosis can follow a variety of diverse insults including ischemia, respiratory infection, or exposure to ionizing radiation. Consequently, treatments that attenuate the development of debilitating fibrosis are in desperate need across a range of conditions. Sphingolipid metabolism is a critical regulator of cell proliferation, apoptosis, autophagy, and pathologic inflammation, processes that are all involved in fibrosis. Opaganib (formerly ABC294640) is the first-in-class investigational drug targeting sphingolipid metabolism for the treatment of cancer and inflammatory diseases. Opaganib inhibits key enzymes in sphingolipid metabolism, including sphingosine kinase-2 and dihydroceramide desaturase, thereby reducing inflammation and promoting autophagy. Herein, we demonstrate in mouse models of lung damage following exposure to ionizing radiation that opaganib significantly improved long-term survival associated with reduced lung fibrosis, suppression of granulocyte infiltration, and reduced expression of IL-6 and TNFα at 180 days after radiation. These data further demonstrate that sphingolipid metabolism is a critical regulator of fibrogenesis, and specifically show that opaganib suppresses radiation-induced pulmonary inflammation and fibrosis. Because opaganib has demonstrated an excellent safety profile during clinical testing in other diseases (cancer and COVID-19), the present studies support additional clinical trials with this drug in patients at risk for pulmonary fibrosis.


Assuntos
Adamantano/análogos & derivados , Contramedidas Médicas , Neoplasias , Pneumonia , Fibrose Pulmonar , Piridinas , Camundongos , Animais , Humanos , Esfingolipídeos/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/patologia , Fibrose , Inflamação/tratamento farmacológico
3.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069222

RESUMO

Antibody-based cancer drugs that target the checkpoint proteins CTLA-4, PD-1 and PD-L1 provide marked improvement in some patients with deadly diseases such as lung cancer and melanoma. However, most patients are either unresponsive or relapse following an initial response, underscoring the need for further improvement in immunotherapy. Certain drugs induce immunogenic cell death (ICD) in tumor cells in which the dying cells promote immunologic responses in the host that may enhance the in vivo activity of checkpoint antibodies. Sphingolipid metabolism is a key pathway in cancer biology, in which ceramides and sphingosine 1-phosphate (S1P) regulate tumor cell death, proliferation and drug resistance, as well as host inflammation and immunity. In particular, sphingosine kinases are key sites for manipulation of the ceramide/S1P balance that regulates tumor cell proliferation and sensitivity to radiation and chemotherapy. We and others have demonstrated that inhibition of sphingosine kinase-2 by the small-molecule investigational drug opaganib (formerly ABC294640) kills tumor cells and increases their sensitivities to other drugs and radiation. Because sphingolipids have been shown to regulate ICD, opaganib may induce ICD and improve the efficacy of checkpoint antibodies for cancer therapy. This was demonstrated by showing that in vitro treatment with opaganib increases the surface expression of the ICD marker calreticulin on a variety of tumor cell types. In vivo confirmation was achieved using the gold standard immunization assay in which B16 melanoma, Lewis lung carcinoma (LLC) or Neuro-2a neuroblastoma cells were treated with opaganib in vitro and then injected subcutaneously into syngeneic mice, followed by implantation of untreated tumor cells 7 days later. In all cases, immunization with opaganib-treated cells strongly suppressed the growth of subsequently injected tumor cells. Interestingly, opaganib treatment induced crossover immunity in that opaganib-treated B16 cells suppressed the growth of both untreated B16 and LLC cells and opaganib-treated LLC cells inhibited the growth of both untreated LLC and B16 cells. Next, the effects of opaganib in combination with a checkpoint antibody on tumor growth in vivo were assessed. Opaganib and anti-PD-1 antibody each slowed the growth of B16 tumors and improved mouse survival, while the combination of opaganib plus anti-PD-1 strongly suppressed tumor growth and improved survival (p < 0.0001). Individually, opaganib and anti-CTLA-4 antibody had modest effects on the growth of LLC tumors and mouse survival, whereas the combination of opaganib with anti-CTLA-4 substantially inhibited tumor growth and increased survival (p < 0.001). Finally, the survival of mice bearing B16 tumors was only marginally improved by opaganib or anti-PD-L1 antibody alone but was nearly doubled by the drugs in combination (p < 0.005). Overall, these studies demonstrate the ability of opaganib to induce ICD in tumor cells, which improves the antitumor activity of checkpoint antibodies.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Lewis , Melanoma Experimental , Humanos , Animais , Camundongos , Morte Celular Imunogênica , Antineoplásicos/uso terapêutico , Piridinas , Melanoma Experimental/tratamento farmacológico , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Linhagem Celular Tumoral
4.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361977

RESUMO

Exposure to ionizing radiation (IR) is a lingering threat from accidental or terroristic nuclear events, but is also widely used in cancer therapy. In both cases, host inflammatory responses to IR damage normal tissue causing morbidity and possibly mortality to the victim/patient. Opaganib, a first-in-class inhibitor of sphingolipid metabolism, has broad anti-inflammatory and anticancer activity. Opaganib elevates ceramide and reduces sphingosine 1-phosphate (S1P) in cells, conditions that increase the antitumor efficacy of radiation while concomitantly suppressing inflammatory damage to normal tissue. Therefore, opaganib may suppress toxicity from unintended IR exposure and improve patient response to chemoradiation. To test these hypotheses, we first examined the effects of opaganib on the toxicity and antitumor activity of radiation in mice exposed to total body irradiation (TBI) or IR with partial bone marrow shielding. Oral treatment with opaganib 2 h before TBI shifted the LD75 from 9.5 Gy to 11.5 Gy, and provided substantial protection against gastrointestinal damage associated with suppression of radiation-induced elevations of S1P and TNFα in the small intestines. In the partially shielded model, opaganib provided dose-dependent survival advantages when administered 4 h before or 24 h after radiation exposure, and was particularly effective when given both prior to and following radiation. Relevant to cancer radiotherapy, opaganib decreased the sensitivity of IEC6 (non-transformed mouse intestinal epithelial) cells to radiation, while sensitizing PAN02 cells to in vitro radiation. Next, the in vivo effects of opaganib in combination with radiation were examined in a syngeneic tumor model consisting of C57BL/6 mice bearing xenografts of PAN02 pancreatic cancer cells and a cross-species xenograft model consisting of nude mice bearing xenografts of human FaDu cells. Mice were treated with opaganib and/or IR (plus cisplatin in the case of FaDu tumors). In both tumor models, the optimal suppression of tumor growth was attained by the combination of opaganib with IR (± cisplatin). Overall, opaganib substantially protects normal tissue from radiation damage that may occur through unintended exposure or cancer radiotherapy.


Assuntos
Cisplatino , Neoplasias , Humanos , Camundongos , Animais , Camundongos Nus , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral
5.
Int J Nephrol Renovasc Dis ; 15: 323-334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420520

RESUMO

Introduction: Acute kidney injury (AKI) is a common multifactorial adverse effect of surgery, circulatory obstruction, sepsis or drug/toxin exposure that often results in morbidity and mortality. Sphingolipid metabolism is a critical regulator of cell survival and pathologic inflammation processes involved in AKI. Opaganib (also known as ABC294640) is a first-in-class experimental drug targeting sphingolipid metabolism that reduces the production and activity of inflammatory cytokines and, therefore, may be effective to prevent and treat AKI. Methods: Murine models of AKI were used to assess the in vivo efficacy of opaganib including ischemia-reperfusion (IR) injury induced by either transient bilateral occlusion of renal blood flow (a moderate model) or nephrectomy followed immediately by occlusion of the contralateral kidney (a severe model) and lipopolysaccharide (LPS)-induced sepsis. Biochemical and histologic assays were used to quantify the effects of oral opaganib treatment on renal damage in these models. Results: Opaganib suppressed the elevations of creatinine and blood urea nitrogen (BUN), as well as granulocyte infiltration into the kidneys, of mice that experienced moderate IR from transient bilateral ligation. Opaganib also markedly decreased these parameters and completely prevented mortality in the severe renal IR model. Additionally, opaganib blunted the elevations of BUN, creatinine and inflammatory cytokines following exposure to LPS. Conclusion: The data support the hypotheses that sphingolipid metabolism is a key mediator of renal inflammatory damage following IR injury and sepsis, and that this can be suppressed by opaganib. Because opaganib has already undergone clinical testing in other diseases (cancer and Covid-19), the present studies support conducting clinical trials with this drug with surgical or septic patients at risk for AKI.

6.
Drug Des Devel Ther ; 16: 2199-2211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855741

RESUMO

The Covid-19 pandemic driven by the SARS-CoV-2 virus continues to exert extensive humanitarian and economic stress across the world. Although antivirals active against mild disease have been identified recently, new drugs to treat moderate and severe Covid-19 patients are needed. Sphingolipids regulate key pathologic processes, including viral proliferation and pathologic host inflammation. Opaganib (aka ABC294640) is a first-in-class clinical drug targeting sphingolipid metabolism for the treatment of cancer and inflammatory diseases. Recent work demonstrates that opaganib also has antiviral activity against several viruses including SARS-CoV-2. A recently completed multinational Phase 2/3 clinical trial of opaganib in patients hospitalized with Covid-19 demonstrated that opaganib can be safely administered to these patients, and more importantly, resulted in a 62% decrease in mortality in a large subpopulation of patients with moderately severe Covid-19. Furthermore, acceleration of the clearance of the virus was observed in opaganib-treated patients. Understanding the biochemical mechanism for the anti-SARS-CoV-2 activity of opaganib is essential for optimizing Covid-19 treatment protocols. Opaganib inhibits three key enzymes in sphingolipid metabolism: sphingosine kinase-2 (SK2); dihydroceramide desaturase (DES1); and glucosylceramide synthase (GCS). Herein, we describe a tripartite model by which opaganib suppresses infection and replication of SARS-CoV-2 by inhibiting SK2, DES1 and GCS. The potential impact of modulation of sphingolipid signaling on multi-organ dysfunction in Covid-19 patients is also discussed.


Assuntos
Tratamento Farmacológico da COVID-19 , Adamantano/análogos & derivados , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Pandemias , Piridinas , SARS-CoV-2 , Esfingolipídeos
7.
J Pharmacol Exp Ther ; 365(1): 107-116, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29434052

RESUMO

Glycogen synthase kinase-3s (GSK3α and GSK3ß) are constitutively active protein kinases that target over 100 substrates, incorporate into numerous protein complexes, and regulate such vital cellular functions as proliferation, apoptosis, and inflammation. Cyclin-dependent kinase 9 (CDK9) regulates RNA production as a component of positive transcription elongation factor b and promotes expression of oncogenic and inflammatory genes. Simultaneous inhibition of these signaling nodes is a promising approach for drug discovery, although previous compounds exhibit limited selectivity and clinical efficacy. The novel diaminothiazole ABC1183 is a selective GSK3α/ß and CDK9 inhibitor and is growth-inhibitory against a broad panel of cancer cell lines. ABC1183 treatment decreases cell survival through G2/M arrest and modulates oncogenic signaling through changes in GSK3, glycogen synthase, and ß-catenin phosphorylation and MCL1 expression. Oral administration, which demonstrates no organ or hematologic toxicity, suppresses tumor growth and inflammation-driven gastrointestinal disease symptoms, owing in part to downregulation of tumor necrosis factor α and interleukin-6 proinflammatory cytokines. Therefore, ABC1183 is strategically poised to effectively mitigate multiple clinically relevant diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Nitrilas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/uso terapêutico , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Nitrilas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico
8.
Mol Cancer Res ; 13(12): 1591-601, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26271487

RESUMO

UNLABELLED: The bioactive sphingolipid sphingosine-1-phosphate (S1P) drives several hallmark processes of cancer, making the enzymes that synthesize S1P, that is, sphingosine kinase 1 and 2 (SK1 and SK2), important molecular targets for cancer drug development. ABC294640 is a first-in-class SK2 small-molecule inhibitor that effectively inhibits cancer cell growth in vitro and in vivo. Given that AR and Myc are two of the most widely implicated oncogenes in prostate cancer, and that sphingolipids affect signaling by both proteins, the therapeutic potential for using ABC294640 in the treatment of prostate cancer was evaluated. This study demonstrates that ABC294640 abrogates signaling pathways requisite for prostate cancer growth and proliferation. Key findings validate that ABC294640 treatment of early-stage and advanced prostate cancer models downregulate Myc and AR expression and activity. This corresponds with significant inhibition of growth, proliferation, and cell-cycle progression. Finally, oral administration of ABC294640 was found to dramatically impede xenograft tumor growth. Together, these pre-clinical findings support the hypotheses that SK2 activity is required for prostate cancer function and that ABC294640 represents a new pharmacological agent for treatment of early stage and aggressive prostate cancer. IMPLICATIONS: Sphingosine kinase inhibition disrupts multiple oncogenic signaling pathways that are deregulated in prostate cancer.


Assuntos
Adamantano/análogos & derivados , Antineoplásicos/administração & dosagem , Regulação para Baixo , Neoplasias da Próstata/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/genética , Piridinas/administração & dosagem , Receptores Androgênicos/genética , Adamantano/administração & dosagem , Adamantano/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Piridinas/farmacologia , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Bioorg Med Chem ; 19(14): 4355-65, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21680190

RESUMO

Gangjee et al. recently reported a novel series of 2-amino-4-methyl-5-phenylethyl substituted-7-benzyl-pyrrolo[2,3-d]pyrimidines, some of which exhibited two digit nanomolar antitumor and antimitotic activity and were not subject to P-glycoprotein (Pgp) or multidrug resistance protein 1 (MRP1) mediated tumor resistance (unlike the Vinca alkaloids and taxanes). Some of these compounds, in addition to their antitumor activity, had the ability to reverse the Pgp-mediated resistance to clinically used antimitotic agents. This report consists of an attempt to optimize the various activities of the parent compounds by synthetic variations of the phenyl ring of the 5-phenylethyl side chain. The target compounds were synthesized via a nine-step synthesis involving a Sonogashira reaction. The substituted phenylacetylenes as coupling partners were in turn synthesized from unactivated aryl bromides or iodides. The target compounds exhibited moderate cytotoxicity against MCF-7 tumor cells. However, most of these compounds showed improved cytotoxicity against the resistant NCI/ADR and MCF-7/VP. This study afforded an analog which reversed both Pgp-mediated as well as MRP1-mediated resistance to clinically used antimitotic agents, along with its own antimitotic mediated antitumor activity. In addition, in the NCI-60 cell line panel one of the compounds inhibited the growth of MDA-MD-435 breast cancer cell line at submicromolar concentration.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mitose/efeitos dos fármacos , Pirimidinas/farmacologia , Pirróis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Pirróis/síntese química , Pirróis/química , Estereoisomerismo , Relação Estrutura-Atividade
10.
J Pharmacol Exp Ther ; 333(1): 129-39, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20061445

RESUMO

Sphingolipid-metabolizing enzymes control the dynamic balance of the cellular levels of important bioactive lipids, including the apoptotic compound ceramide and the proliferative compound sphingosine 1-phosphate (S1P). Many growth factors and inflammatory cytokines promote the cleavage of sphingomyelin and ceramide leading to rapid elevation of S1P levels through the action of sphingosine kinases (SK1 and SK2). SK1 and SK2 are overexpressed in a variety of human cancers, making these enzymes potential molecular targets for cancer therapy. We have identified an aryladamantane compound, termed ABC294640 [3-(4-chlorophenyl)-adamantane-1-carboxylic acid (pyridin-4-ylmethyl)amide], that selectively inhibits SK2 activity in vitro, acting as a competitive inhibitor with respect to sphingosine with a K(i) of 9.8 muM, and attenuates S1P formation in intact cells. In tissue culture, ABC294640 suppresses the proliferation of a broad panel of tumor cell lines, and inhibits tumor cell migration concomitant with loss of microfilaments. In vivo, ABC294640 has excellent oral bioavailability, and demonstrates a plasma clearance half-time of 4.5 h in mice. Acute and chronic toxicology studies indicate that ABC294640 induces a transient minor decrease in the hematocrit of rats and mice; however, this normalizes by 28 days of treatment. No other changes in hematology parameters, or gross or microscopic tissue pathology, result from treatment with ABC294640. Oral administration of ABC294640 to mice bearing mammary adenocarcinoma xenografts results in dose-dependent antitumor activity associated with depletion of S1P levels in the tumors and progressive tumor cell apoptosis. Therefore, this newly developed SK2 inhibitor provides an orally available drug candidate for the treatment of cancer and other diseases.


Assuntos
Adamantano/análogos & derivados , Antineoplásicos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Piridinas/farmacologia , Adamantano/farmacocinética , Adamantano/farmacologia , Adamantano/uso terapêutico , Administração Oral , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Apoptose , Disponibilidade Biológica , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Piridinas/farmacocinética , Piridinas/uso terapêutico , Ratos , Ratos Sprague-Dawley
11.
Dig Dis Sci ; 53(4): 997-1012, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18058233

RESUMO

A critical step in the mechanism of action of inflammatory cytokines is the stimulation of sphingolipid metabolism, including activation of sphingosine kinase (SK), which produces the mitogenic and proinflammatory lipid sphingosine 1-phosphate (S1P). We have developed orally bioavailable compounds that effectively inhibit SK activity in vitro in intact cells and in cancer models in vivo. In this study, we assessed the effects of these SK inhibitors on cellular responses to tumor necrosis factor alpha (TNFalpha) and evaluated their efficacy in the dextran sulfate sodium (DSS) model of ulcerative colitis in mice. Using several cell systems, it was shown that the SK inhibitors block the ability of TNFalpha to activate nuclear factor kappa B (NFkappaB), induce expression of adhesion proteins, and promote production of prostaglandin E(2) (PGE(2)). In an acute model of DSS-induced ulcerative colitis, SK inhibitors were equivalent to or more effective than Dipentum in reducing disease progression, colon shortening, and neutrophil infiltration into the colon. The effects of SK inhibitors were associated with decreased colonic levels of inflammatory cytokines TNFalpha, interleukin (IL)-1beta, interferon gamma (IFN)-gamma, IL-6, and reduction of S1P levels. A similar reduction in disease progression was provided by SK inhibitors in a chronic model of ulcerative colitis in which the mice received 3-week-long cycles of DSS interspaced with week-long recovery periods. In the chronic model, immunohistochemistry for SK showed increased expression in DSS-treated mice (compared with water-treated controls) that was reduced by drug treatment. S1P levels were also elevated in the DSS group and significantly reduced by drug treatment. Together, these data indicate that SK is a critical component in inflammation and that inhibitors of this enzyme may be useful in treating inflammatory bowel diseases.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Administração Oral , Animais , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/administração & dosagem , Fator de Necrose Tumoral alfa/metabolismo
12.
Mol Cancer Ther ; 5(7): 1647-59, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16891450

RESUMO

The covalent attachment of palmitate to specific proteins by the action of palmitoyl acyltransferases (PAT) plays critical roles in the biological activities of several oncoproteins. Two PAT activities are expressed by human cells: type 1 PATs that modify the farnesyl-dependent palmitoylation motif found in H- and N-Ras, and type 2 PATs that modify the myristoyl-dependent palmitoylation motif found in the Src family of tyrosine kinases. We have previously shown that the type 1 PAT HIP14 causes cellular transformation. In the current study, we show that mRNA encoding HIP14 is up-regulated in a number of types of human tumors. To assess the potential of HIP14 and other PATs as targets for new anticancer drugs, we developed three cell-based assays suitable for high-throughput screening to identify inhibitors of these enzymes. Using these screens, five chemotypes, with activity toward either type 1 or type 2 PAT activity, were identified. The activity of the hits were confirmed using assays that quantify the in vitro inhibition of PAT activity, as well as a cell-based assay that determines the abilities of the compounds to prevent the localization of palmitoylated green fluorescent proteins to the plasma membrane. Representative compounds from each chemotype showed broad antiproliferative activity toward a panel of human tumor cell lines and inhibited the growth of tumors in vivo. Together, these data show that PATs, and HIP14 in particular, are interesting new targets for anticancer compounds, and that small molecules with such activity can be identified by high-throughput screening.


Assuntos
Aciltransferases/antagonistas & inibidores , Antineoplásicos/farmacologia , Proteínas de Transporte/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Neoplasias/enzimologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Aciltransferases/genética , Proteínas Adaptadoras de Transdução de Sinal , Antineoplásicos/química , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Seleção de Medicamentos Antitumorais/estatística & dados numéricos , Inibidores Enzimáticos/química , Humanos , Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas ras/antagonistas & inibidores , Proteínas ras/metabolismo
13.
J Pharmacol Exp Ther ; 318(2): 596-603, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16632640

RESUMO

Sphingosine kinase (SK) is an oncogenic sphingolipid-metabolizing enzyme that catalyzes the formation of the mitogenic second messenger sphingosine-1-phosphate (S1P) at the expense of proapoptotic ceramide. Thus, SK is an attractive target for cancer therapy because blockage of S1P formation leads to inhibition of proliferation, as well as the induction of apoptosis in cancer cells. We have recently identified novel SK inhibitors with nanomolar to low micromolar potencies toward recombinant human SK. This study describes the continuing analysis of these inhibitors through in vitro and in vivo experiments. All three structurally diverse SK inhibitors tested showed antitumor activity in mice without exhibiting toxicity. Blood and tumor inhibitor concentrations exceeded in vitro potency levels. Cell signaling analyses in vitro revealed mixed inhibition of mitogen-activated protein kinase kinase and Akt phosphorylation by the SK inhibitors. Importantly, 4-[4-(4-chloro-phenyl)-thiazol-2-ylamino]-phenol (SKI-II) is orally bioavailable, detected in the blood for at least 8 h, and showed a significant inhibition of tumor growth in mice. These compounds are the first examples of nonlipid selective inhibitors of SK with in vivo antitumor activity and provide leads for further development of inhibitors of this important molecular target.


Assuntos
Antineoplásicos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/farmacocinética , Feminino , Meia-Vida , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Proto-Oncogênicas c-akt/biossíntese , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA