Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 628(8007): 408-415, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480883

RESUMO

During development, inflammation or tissue injury, macrophages may successively engulf and process multiple apoptotic corpses via efferocytosis to achieve tissue homeostasis1. How macrophages may rapidly adapt their transcription to achieve continuous corpse uptake is incompletely understood. Transcriptional pause/release is an evolutionarily conserved mechanism, in which RNA polymerase (Pol) II initiates transcription for 20-60 nucleotides, is paused for minutes to hours and is then released to make full-length mRNA2. Here we show that macrophages, within minutes of corpse encounter, use transcriptional pause/release to unleash a rapid transcriptional response. For human and mouse macrophages, the Pol II pause/release was required for continuous efferocytosis in vitro and in vivo. Interestingly, blocking Pol II pause/release did not impede Fc receptor-mediated phagocytosis, yeast uptake or bacterial phagocytosis. Integration of data from three genomic approaches-precision nuclear run-on sequencing, RNA sequencing, and assay for transposase-accessible chromatin using sequencing (ATAC-seq)-on efferocytic macrophages at different time points revealed that Pol II pause/release controls expression of select transcription factors and downstream target genes. Mechanistic studies on transcription factor EGR3, prominently regulated by pause/release, uncovered EGR3-related reprogramming of other macrophage genes involved in cytoskeleton and corpse processing. Using lysosomal probes and a new genetic fluorescent reporter, we identify a role for pause/release in phagosome acidification during efferocytosis. Furthermore, microglia from egr3-deficient zebrafish embryos displayed reduced phagocytosis of apoptotic neurons and fewer maturing phagosomes, supporting defective corpse processing. Collectively, these data indicate that macrophages use Pol II pause/release as a mechanism to rapidly alter their transcriptional programs for efficient processing of the ingested apoptotic corpses and for successive efferocytosis.


Assuntos
Eferocitose , Macrófagos , RNA Polimerase II , Elongação da Transcrição Genética , Animais , Humanos , Masculino , Camundongos , Apoptose , Citoesqueleto/metabolismo , Proteína 3 de Resposta de Crescimento Precoce/deficiência , Proteína 3 de Resposta de Crescimento Precoce/genética , Eferocitose/genética , Concentração de Íons de Hidrogênio , Macrófagos/imunologia , Macrófagos/metabolismo , Neurônios/metabolismo , Fagossomos/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Fatores de Tempo
2.
J Hepatol ; 81(1): 62-75, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38460793

RESUMO

BACKGROUND & AIMS: Syndromic biliary atresia is a cholangiopathy characterized by fibro-obliterative changes in the extrahepatic bile duct (EHBD) and congenital malformations including laterality defects. The etiology remains elusive and faithful animal models are lacking. Genetic syndromes provide important clues regarding the pathogenic mechanisms underlying the disease. We investigated the role of the gene Pkd1l1 in the pathophysiology of syndromic biliary atresia. METHODS: Constitutive and conditional Pkd1l1 knockout mice were generated to explore genetic pathology as a cause of syndromic biliary atresia. We investigated congenital malformations, EHBD and liver pathology, EHBD gene expression, and biliary epithelial cell turnover. Biliary drainage was functionally assessed with cholangiography. Histology and serum chemistries were assessed after DDC (3,5-diethoxycarbony l-1,4-dihydrocollidine) diet treatment and inhibition of the ciliary signaling effector GLI1. RESULTS: Pkd1l1-deficient mice exhibited congenital anomalies including malrotation and heterotaxy. Pkd1l1-deficient EHBDs were hypertrophic and fibrotic. Pkd1l1-deficient EHBDs were patent but displayed delayed biliary drainage. Pkd1l1-deficient livers exhibited ductular reaction and periportal fibrosis. After DDC treatment, Pkd1l1-deficient mice exhibited EHBD obstruction and advanced liver fibrosis. Pkd1l1-deficient mice had increased expression of fibrosis and extracellular matrix remodeling genes (Tgfα, Cdkn1a, Hb-egf, Fgfr3, Pdgfc, Mmp12, and Mmp15) and decreased expression of genes mediating ciliary signaling (Gli1, Gli2, Ptch1, and Ptch2). Primary cilia were reduced on biliary epithelial cells and altered expression of ciliogenesis genes occurred in Pkd1l1-deficient mice. Small molecule inhibition of the ciliary signaling effector GLI1 with Gant61 recapitulated Pkd1l1-deficiency. CONCLUSIONS: Pkd1l1 loss causes both laterality defects and fibro-proliferative EHBD transformation through disrupted ciliary signaling, phenocopying syndromic biliary atresia. Pkd1l1-deficient mice function as an authentic genetic model for study of the pathogenesis of biliary atresia. IMPACT AND IMPLICATIONS: The syndromic form of biliary atresia is characterized by fibro-obliteration of extrahepatic bile ducts and is often accompanied by laterality defects. The etiology is unknown, but Pkd1l1 was identified as a potential genetic candidate for syndromic biliary atresia. We found that loss of the ciliary gene Pkd1l1 contributes to hepatobiliary pathology in biliary atresia, exhibited by bile duct hypertrophy, reduced biliary drainage, and liver fibrosis in Pkd1l1-deficient mice. Pkd1l1-deficient mice serve as a genetic model of biliary atresia and reveal ciliopathy as an etiology of biliary atresia. This model will help scientists uncover new therapeutic approaches for patients with biliary atresia, while pediatric hepatologists should validate the diagnostic utility of PKD1L1 variants.


Assuntos
Atresia Biliar , Cílios , Modelos Animais de Doenças , Células Epiteliais , Camundongos Knockout , Animais , Camundongos , Ductos Biliares Extra-Hepáticos/metabolismo , Ductos Biliares Extra-Hepáticos/patologia , Atresia Biliar/metabolismo , Atresia Biliar/patologia , Atresia Biliar/genética , Cílios/metabolismo , Cílios/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Piridinas , Transdução de Sinais
4.
J Cutan Pathol ; 48(9): 1109-1114, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33635594

RESUMO

BACKGROUND: Cutaneous histopathologic diagnoses in children often differ from those in adults. Depending on practice setting, these specimens may be evaluated by dermatopathologists or pediatric pathologists. We sought to determine whether comfort level with pediatric dermatopathology is associated with prior training, pediatric dermatopathology exposure during fellowship, career duration, or specimen subtype. METHODS: We surveyed dermatopathologists and pediatric pathologists practicing in the United States. Training and practice variables were evaluated by multivariable regression for association with comfort level. RESULTS: Of the 156 respondents, 72% were dermatopathologists (response rate 11.6%) and 28% were pediatric pathologists (response rate 9.3%). Dermatopathologists reported higher comfort overall (P < .001); this was also true for inflammatory dermatoses and melanocytic neoplasms (P < .001). Thirty-four percent and 75% of dermatopathologists and pediatric pathologists, respectively, reported lower comfort with pediatric skin specimens than their usual cases. Pediatric pathologists were 28% more likely to refer these cases to colleagues. Among dermatopathologists, dermatology-trained were more comfortable than pathology-trained colleagues interpreting inflammatory dermatoses (P < .001). CONCLUSIONS: Pathologists' comfort with pediatric dermatopathology varied significantly based upon prior training, career duration, and specimen subtype. These results suggest opportunities for improving education in this domain.


Assuntos
Competência Clínica/estatística & dados numéricos , Dermatologistas/estatística & dados numéricos , Patologistas/estatística & dados numéricos , Manejo de Espécimes/psicologia , Criança , Estudos Transversais , Bolsas de Estudo , Humanos , Melanócitos/patologia , Melanoma/patologia , Pediatria/tendências , Encaminhamento e Consulta , Autoeficácia , Pele/patologia , Dermatopatias/diagnóstico , Dermatopatias/patologia , Neoplasias Cutâneas/patologia , Inquéritos e Questionários , Estados Unidos
5.
Proc (Bayl Univ Med Cent) ; 33(1): 69-70, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32063776

RESUMO

Extramedullary hematopoiesis (EMH) is a well-known phenomenon occurring during fetal development. In the postfetal condition, EMH is commonly associated with hematologic conditions including chronic myeloproliferative or lymphoproliferative disorders, leukemias, and chronic and inherited anemias. We report an unusual location for EMH that masqueraded as a cranial tumor.

6.
Clin Cancer Res ; 26(10): 2297-2307, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31969338

RESUMO

PURPOSE: Treatment failure from drug resistance is the primary reason for relapse in acute lymphoblastic leukemia (ALL). Improving outcomes by targeting mechanisms of drug resistance is a potential solution. PATIENTS AND METHODS: We report results investigating the epigenetic modulators decitabine and vorinostat with vincristine, dexamethasone, mitoxantrone, and PEG-asparaginase for pediatric patients with relapsed or refractory B-cell ALL (B-ALL). Twenty-three patients, median age 12 years (range, 1-21) were treated in this trial. RESULTS: The most common grade 3-4 toxicities included hypokalemia (65%), anemia (78%), febrile neutropenia (57%), hypophosphatemia (43%), leukopenia (61%), hyperbilirubinemia (39%), thrombocytopenia (87%), neutropenia (91%), and hypocalcemia (39%). Three subjects experienced dose-limiting toxicities, which included cholestasis, steatosis, and hyperbilirubinemia (n = 1); seizure, somnolence, and delirium (n = 1); and pneumonitis, hypoxia, and hyperbilirubinemia (n = 1). Infectious complications were common with 17 of 23 (74%) subjects experiencing grade ≥3 infections including invasive fungal infections in 35% (8/23). Nine subjects (39%) achieved a complete response (CR + CR without platelet recovery + CR without neutrophil recovery) and five had stable disease (22%). Nine (39%) subjects were not evaluable for response, primarily due to treatment-related toxicities. Correlative pharmacodynamics demonstrated potent in vivo modulation of epigenetic marks, and modulation of biologic pathways associated with functional antileukemic effects. CONCLUSIONS: Despite encouraging response rates and pharmacodynamics, the combination of decitabine and vorinostat on this intensive chemotherapy backbone was determined not feasible in B-ALL due to the high incidence of significant infectious toxicities. This study is registered at http://www.clinicaltrials.gov as NCT01483690.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Adolescente , Adulto , Asparaginase/administração & dosagem , Bortezomib/administração & dosagem , Criança , Pré-Escolar , Decitabina/administração & dosagem , Dexametasona/administração & dosagem , Doxorrubicina/administração & dosagem , Feminino , Seguimentos , Humanos , Lactente , Masculino , Mitoxantrona/administração & dosagem , Recidiva Local de Neoplasia/patologia , Projetos Piloto , Polietilenoglicóis/administração & dosagem , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Prognóstico , Terapia de Salvação/métodos , Taxa de Sobrevida , Vincristina/administração & dosagem , Vorinostat/administração & dosagem , Adulto Jovem
7.
Proc (Bayl Univ Med Cent) ; 31(1): 81-83, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29686563

RESUMO

Lymphangioleiomyomatosis (LAM) is a rare cystic pulmonary disease that may occur in association with mutations in the tuberous sclerosis genes or arise sporadically. The histologic hallmark of the disease is the "LAM" cell, a spindled to epithelioid smooth muscle-like cell that bears morphologic and immunohistochemical resemblance to the perivascular epithelioid cell tumors (PEComas). The origin of the "LAM" cell is unknown; emerging theories suggest that a member of the PEComa family, the renal angiomyolipoma, may be the primary source and that both LAM and angiomyolipomas are associated with the genetic syndrome tuberous sclerosis. We present a young woman with LAM with an aggressive renal angiomyolipoma confirmed at autopsy.

8.
Mol Cancer Res ; 13(4): 699-712, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25828893

RESUMO

UNLABELLED: Leukemias expressing the constitutively activated tyrosine kinases (TK) BCR-ABL1 and FLT3/ITD activate signaling pathways that increase genomic instability through generation of reactive oxygen species (ROS), DNA double-strand breaks (DSB), and error-prone repair. The nonhomologous end-joining (NHEJ) pathway is a major pathway for DSB repair and is highly aberrant in TK-activated leukemias; an alternative form of NHEJ (ALT-NHEJ) predominates, evidenced by increased expression of DNA ligase IIIα (LIG3) and PARP1, increased frequency of large genomic deletions, and repair using DNA sequence microhomologies. This study, for the first time, demonstrates that the TK target c-MYC plays a role in transcriptional activation and subsequent expression of LIG3 and PARP1 and contributes to the increased error-prone repair observed in TK-activated leukemias. c-MYC negatively regulates microRNAs miR-150 and miR-22, which demonstrate an inverse correlation with LIG3 and PARP1 expression in primary and cultured leukemia cells and chronic myelogenous leukemia human patient samples. Notably, inhibition of c-MYC and overexpression of miR-150 and -22 decreases ALT-NHEJ activity. Thus, BCR-ABL1 or FLT3/ITD induces c-MYC expression, leading to genomic instability via augmented expression of ALT-NHEJ repair factors that generate repair errors. IMPLICATIONS: In the context of TK-activated leukemias, c-MYC contributes to aberrant DNA repair through downstream targets LIG3 and PARP1, which represent viable and attractive therapeutic targets.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Ligases/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Poli(ADP-Ribose) Polimerases/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Linhagem Celular Tumoral , DNA Ligase Dependente de ATP , DNA de Neoplasias/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , Poli(ADP-Ribose) Polimerase-1 , Proteínas de Ligação a Poli-ADP-Ribose , Transcrição Gênica , Proteínas de Xenopus
9.
PLoS One ; 7(12): e50895, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236401

RESUMO

MicroRNAs (miRs) play major roles in normal hematopoietic differentiation and hematopoietic malignancies. In this work, we report that miR-27a, and its coordinately expressed cluster (miR-23a∼miR-27a∼miR-24-2), was down-regulated in acute leukemia cell lines and primary samples compared to hematopoietic stem-progenitor cells (HSPCs). Decreased miR-23a cluster expression in some acute leukemia cell lines was mediated by c-MYC. Replacement of miR-27a in acute leukemia cell lines inhibited cell growth due, at least in part, to increased cellular apoptosis. We identified a member of the anti-apoptotic 14-3-3 family of proteins, which support cell survival by interacting with and negatively regulating pro-apoptotic proteins such as Bax and Bad, as a target of miR-27a. Specifically, miR-27a regulated 14-3-3θ at both the mRNA and protein levels. These data indicate that miR-27a contributes a tumor suppressor-like activity in acute leukemia cells via regulation of apoptosis, and that miR-27a and 14-3-3θ may be potential therapeutic targets.


Assuntos
Proteínas 14-3-3/genética , Leucemia/genética , MicroRNAs/genética , Proteínas Supressoras de Tumor/genética , Proteínas 14-3-3/metabolismo , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia/metabolismo , MicroRNAs/metabolismo , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA