Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(29): 33821-33829, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34254515

RESUMO

Safe and effective antimicrobials are needed to combat emerging antibiotic-resistant bacteria. Structurally nanoengineered antimicrobial peptide polymers (termed SNAPPs) interact with bacterial cell membranes to potently kill bacteria but may also interact at some level with human cell membranes. We studied the association of four different SNAPPs with six different white blood cells within fresh whole human blood by flow cytometry. In whole human blood, SNAPPs had detectable association with phagocytic cells and B cells, but not natural killer and T cells. However, without plasma proteins and therefore no protein corona on the SNAPPs, a greater marked association of SNAPPs with all white blood cell types was detected, resulting in cytotoxicity against most blood cell components. Thus, the formation of a protein corona around the SNAPPs reduced the association and prevented human blood cell cytotoxicity of the SNAPPs. Understanding the bio-nano interactions of these SNAPPs will be crucial to ensuring that the design of next-generation SNAPPs and other promising antimicrobial nanomaterials continues to display high efficacy toward antibiotic-resistant bacteria while maintaining a low toxicity to primary human cells.


Assuntos
Anti-Infecciosos/toxicidade , Dendrímeros/toxicidade , Leucócitos/efeitos dos fármacos , Poliaminas/toxicidade , Proteínas Citotóxicas Formadoras de Poros/toxicidade , Coroa de Proteína/metabolismo , Anti-Infecciosos/metabolismo , Proteínas Sanguíneas/metabolismo , Dendrímeros/metabolismo , Humanos , Poliaminas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo
2.
Cell Rep Med ; 2(6): 100296, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33997824

RESUMO

The capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of such antibodies during convalescence from coronavirus disease 2019 (COVID-19) is largely unknown. We develop assays to measure Fc-dependent antibody functions against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-expressing cells in serial samples from subjects primarily with mild-moderate COVID-19 up to 149 days post-infection. We find that S-specific antibodies capable of engaging Fcγ receptors decay over time, with S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declining accordingly. Although there is significant decay in ADCC and ADP activity, they remain readily detectable in almost all subjects at the last time point studied (94%) in contrast with neutralization activity (70%). Although it remains unclear the degree to which Fc effector functions contribute to protection against SARS-CoV-2 re-infection, our results indicate that antibodies with Fc effector functions persist longer than neutralizing antibodies.


Assuntos
Anticorpos Antivirais/metabolismo , COVID-19/imunologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Anticorpos Antivirais/sangue , Citotoxicidade Celular Dependente de Anticorpos/imunologia , COVID-19/patologia , COVID-19/virologia , Linhagem Celular Tumoral , Dimerização , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Cinética , Testes de Neutralização , Fagocitose , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
3.
Sci Rep ; 11(1): 1864, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479388

RESUMO

The ferret is a key animal model for investigating the pathogenicity and transmissibility of important human viruses, and for the pre-clinical assessment of vaccines. However, relatively little is known about the ferret immune system, due in part to a paucity of ferret-reactive reagents. In particular, T follicular helper (Tfh) cells are critical in the generation of effective humoral responses in humans, mice and other animal models but to date it has not been possible to identify Tfh in ferrets. Here, we describe the screening and development of ferret-reactive BCL6, CXCR5 and PD-1 monoclonal antibodies. We found two commercial anti-BCL6 antibodies (clone K112-91 and clone IG191E/A8) had cross-reactivity with lymph node cells from influenza-infected ferrets. We next developed two murine monoclonal antibodies against ferret CXCR5 (clone feX5-C05) and PD-1 (clone fePD-CL1) using a single B cell PCR-based method. We were able to clearly identify Tfh cells in lymph nodes from influenza infected ferrets using these antibodies. The development of ferret Tfh marker antibodies and the identification of ferret Tfh cells will assist the evaluation of vaccine-induced Tfh responses in the ferret model and the design of novel vaccines against the infection of influenza and other viruses, including SARS-CoV2.


Assuntos
Anticorpos Monoclonais/imunologia , Furões/imunologia , Ensaios de Triagem em Larga Escala/métodos , Células T Auxiliares Foliculares/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Vacinas contra COVID-19/imunologia , Reações Cruzadas/imunologia , Humanos , Vacinas contra Influenza/imunologia , Linfonodos/imunologia , Camundongos , Receptor de Morte Celular Programada 1/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , Receptores CXCR5/imunologia , Vacinas Virais/imunologia
4.
Small ; 16(33): e2002861, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32583981

RESUMO

A key concept in nanomedicine is encapsulating therapeutic or diagnostic agents inside nanoparticles to prolong blood circulation time and to enhance interactions with targeted cells. During circulation and depending on the selected application (e.g., cancer drug delivery or immune modulators), nanoparticles are required to possess low or high interactions with cells in human blood and blood vessels to minimize side effects or maximize delivery efficiency. However, analysis of cellular interactions in blood vessels is challenging and is not yet realized due to the diverse components of human blood and hemodynamic flow in blood vessels. Here, the first comprehensive method to analyze cellular interactions of both synthetic and commercially available nanoparticles under human blood flow conditions in a microvascular network is developed. Importantly, this method allows to unravel the complex interplay of size, charge, and type of nanoparticles on their cellular associations under the dynamic flow of human blood. This method offers a unique platform to study complex interactions of any type of nanoparticles in human blood flow conditions and serves as a useful guideline for the rational design of liposomes and polymer nanoparticles for diverse applications in nanomedicine.


Assuntos
Lipossomos , Nanopartículas , Hemodinâmica , Humanos , Microvasos , Polimerização
5.
Adv Healthc Mater ; 9(13): e2000261, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424998

RESUMO

There is a need for improved nanomaterials to simultaneously target cancer cells and avoid non-specific clearance by phagocytes. An ellipsoidal polymersome system is developed with a unique tunable size and shape property. These particles are functionalized with in-house phage-display cell-targeting peptide to target a medulloblastoma cell line in vitro. Particle association with medulloblastoma cells is modulated by tuning the peptide ligand density on the particles. These polymersomes has low levels of association with primary human blood phagocytes. The stealth properties of the polymersomes are further improved by including the peptide targeting moiety, an effect that is likely driven by the peptide protecting the particles from binding blood plasma proteins. Overall, this ellipsoidal polymersome system provides a promising platform to explore tumor cell targeting in vivo.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Linhagem Celular Tumoral , Humanos , Ligantes , Peptídeos
6.
Expert Rev Vaccines ; 18(3): 269-280, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30707635

RESUMO

INTRODUCTION: Immunization has been a remarkably successful public health intervention; however, new approaches to vaccine design are essential to counter existing and emerging infectious diseases which have defied traditional vaccination efforts to date. Nanoparticles (ordered structures with dimensions in the range of 1-1000 nm) have great potential to supplement traditional vaccines based upon pathogen subunits, or killed or attenuated microorganisms, as exemplified by the successful licensure of virus-like particle vaccines for human papillomavirus and hepatitis B. However, the immunological mechanisms that underpin the potent immunity of nanoparticle vaccines are poorly defined. AREAS COVERED: Here, we review the immunity of nanoparticle immunization. The display of antigen in a repetitive, ordered array mimics the surface of a pathogen, as does their nanoscale size. These properties facilitate enhanced innate immune activation, improved drainage and retention in lymph nodes, stronger engagement with B cell receptors, and augmented T cell help in driving B cell activation. EXPERT OPINION: In the near future, increasingly complex nanoparticle vaccines displaying multiple antigens and/or co-delivered adjuvants will reach clinical trials. An improved mechanistic understanding of nanoparticle vaccination will ultimately facilitate the rational design of improved vaccines for human health.


Assuntos
Nanopartículas , Vacinação/métodos , Vacinas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Animais , Antígenos Virais/imunologia , Humanos , Imunogenicidade da Vacina , Saúde Pública , Vacinas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA