Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 329, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090270

RESUMO

Decidualisation of the endometrium is a key event in early pregnancy, which enables embryo implantation. Importantly, the molecular processes impairing decidualisation in obese mothers are yet to be characterised. We hypothesise that impaired decidualisation in obese mice is mediated by the upregulation of leptin modulators, the suppressor of cytokine signalling 3 (SOCS3) and the protein tyrosine phosphatase non-receptor type 2 (PTPN2), together with the disruption of progesterone (P4)-signal transducer and activator of transcription (STAT3) signalling. After feeding mice with chow diet (CD) or high-fat diet (HFD) for 16 weeks, we confirmed the downregulation of P4 and oestradiol (E2) steroid receptors in decidua from embryonic day (E) 6.5 and decreased proliferation of stromal cells from HFD. In vitro decidualised mouse endometrial stromal cells (MESCs) and E6.5 deciduas from the HFD showed decreased expression of decidualisation markers, followed by the upregulation of SOCS3 and PTPN2 and decreased phosphorylation of STAT3. In vivo and in vitro leptin treatment of mice and MESCs mimicked the results observed in the obese model. The downregulation of Socs3 and Ptpn2 after siRNA transfection of MESCs from HFD mice restored the expression level of decidualisation markers. Finally, DIO mice placentas from E18.5 showed decreased labyrinth development and vascularisation and fetal growth restricted embryos. The present study revealed major defects in decidualisation in obese mice, characterised by altered uterine response to E2 and P4 steroid signalling. Importantly, altered hormonal response was associated with increased expression of leptin signalling modulators SOCS3 and PTPN2. Elevated levels of SOCS3 and PTPN2 were shown to molecularly affect decidualisation in obese mice, potentially disrupting the STAT3-PR regulatory molecular hub.


Assuntos
Decídua , Retardo do Crescimento Fetal , Leptina , Placenta , Transdução de Sinais , Animais , Feminino , Camundongos , Gravidez , Decídua/metabolismo , Decídua/patologia , Dieta Hiperlipídica/efeitos adversos , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Obesidade/patologia , Placenta/metabolismo , Progesterona/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Fator de Transcrição STAT3/metabolismo , Células Estromais/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética
2.
Cell Rep ; 42(7): 112751, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37405921

RESUMO

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a cancer syndrome caused by inactivating germline mutations in fumarate hydratase (FH) and subsequent accumulation of fumarate. Fumarate accumulation leads to profound epigenetic changes and the activation of an anti-oxidant response via nuclear translocation of the transcription factor NRF2. The extent to which chromatin remodeling shapes this anti-oxidant response is currently unknown. Here, we explored the effects of FH loss on the chromatin landscape to identify transcription factor networks involved in the remodeled chromatin landscape of FH-deficient cells. We identify FOXA2 as a key transcription factor that regulates anti-oxidant response genes and subsequent metabolic rewiring cooperating without direct interaction with the anti-oxidant regulator NRF2. The identification of FOXA2 as an anti-oxidant regulator provides additional insights into the molecular mechanisms behind cell responses to fumarate accumulation and potentially provides further avenues for therapeutic intervention for HLRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Leiomiomatose , Síndromes Neoplásicas Hereditárias , Neoplasias Cutâneas , Neoplasias Uterinas , Feminino , Humanos , Fumarato Hidratase/genética , Antioxidantes , Fator 2 Relacionado a NF-E2/genética , Leiomiomatose/genética , Neoplasias Uterinas/genética , Neoplasias Cutâneas/genética , Síndromes Neoplásicas Hereditárias/genética , Cromatina , Neoplasias Renais/genética , Carcinoma de Células Renais/genética , Fator 3-beta Nuclear de Hepatócito/genética
3.
Nature ; 600(7890): 737-742, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34880491

RESUMO

Stability of the epigenetic landscape underpins maintenance of the cell-type-specific transcriptional profile. As one of the main repressive epigenetic systems, DNA methylation has been shown to be important for long-term gene silencing; its loss leads to ectopic and aberrant transcription in differentiated cells and cancer1. The developing mouse germ line endures global changes in DNA methylation in the absence of widespread transcriptional activation. Here, using an ultra-low-input native chromatin immunoprecipitation approach, we show that following DNA demethylation the gonadal primordial germ cells undergo remodelling of repressive histone modifications, resulting in a sex-specific signature in mice. We further demonstrate that Polycomb has a central role in transcriptional control in the newly hypomethylated germline genome as the genetic loss of Ezh2 leads to aberrant transcriptional activation, retrotransposon derepression and dramatic loss of developing female germ cells. This sex-specific effect of Ezh2 deletion is explained by the distinct landscape of repressive modifications observed in male and female germ cells. Overall, our study provides insight into the dynamic interplay between repressive chromatin modifications in the context of a developmental reprogramming system.


Assuntos
Montagem e Desmontagem da Cromatina , Células Germinativas , Animais , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Metilação de DNA , Epigênese Genética , Feminino , Células Germinativas/metabolismo , Masculino , Camundongos , Proteínas do Grupo Polycomb/metabolismo
4.
Genes (Basel) ; 12(8)2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34440388

RESUMO

Genomic imprinting is an epigenetic marking process that results in the monoallelic expression of a subset of genes. Many of these 'imprinted' genes in mice and humans are involved in embryonic and extraembryonic growth and development, and some have life-long impacts on metabolism. During mammalian development, the genome undergoes waves of (re)programming of DNA methylation and other epigenetic marks. Disturbances in these events can cause imprinting disorders and compromise development. Multi-locus imprinting disturbance (MLID) is a condition by which imprinting defects touch more than one locus. Although most cases with MLID present with clinical features characteristic of one imprinting disorder. Imprinting defects also occur in 'molar' pregnancies-which are characterized by highly compromised embryonic development-and in other forms of reproductive compromise presenting clinically as infertility or early pregnancy loss. Pathogenic variants in some of the genes encoding proteins of the subcortical maternal complex (SCMC), a multi-protein complex in the mammalian oocyte, are responsible for a rare subgroup of moles, biparental complete hydatidiform mole (BiCHM), and other adverse reproductive outcomes which have been associated with altered imprinting status of the oocyte, embryo and/or placenta. The finding that defects in a cytoplasmic protein complex could have severe impacts on genomic methylation at critical times in gamete or early embryo development has wider implications beyond these relatively rare disorders. It signifies a potential for adverse maternal physiology, nutrition, or assisted reproduction to cause epigenetic defects at imprinted or other genes. Here, we review key milestones in DNA methylation patterning in the female germline and the embryo focusing on humans. We provide an overview of recent findings regarding DNA methylation deficits causing BiCHM, MLID, and early embryonic arrest. We also summarize identified SCMC mutations with regard to early embryonic arrest, BiCHM, and MLID.


Assuntos
Metilação de DNA , Impressão Genômica , Células Germinativas , Mutação , Epigênese Genética , Feminino , Humanos
5.
Cancers (Basel) ; 12(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971738

RESUMO

Colorectal cancer is a heterogeneous disease caused by both genetic and epigenetics factors. Analysing DNA methylation changes occurring during colorectal cancer progression and metastasis formation is crucial for the identification of novel epigenetic markers of patient prognosis. Genome-wide methylation sequencing of paired samples of colon (normal adjacent, primary tumour and lymph node metastasis) showed global hypomethylation and CpG island (CGI) hypermethylation of primary tumours compared to normal. In metastasis we observed high global and non-CGI regions methylation, but lower CGI methylation, compared to primary tumours. Gene ontology analysis showed shared biological processes between hypermethylated CGIs in metastasis and primary tumours. After complementary analysis with The Cancer Genome Atlas (TCGA) cohort, FIGN, HTRA3, BDNF, HCN4 and STAC2 genes were found associated with poor survival. We mapped the methylation landscape of colon normal tissues, primary tumours and lymph node metastasis, being capable of identified methylation changes throughout the genome. Furthermore, we found five genes with potential for methylation biomarkers of poor prognosis in colorectal cancer patients.

6.
Int J Mol Sci ; 21(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854421

RESUMO

TNFα is the main proinflammatory cytokine implicated in the pathogenesis of neurodegenerative disorders, but it also modulates physiological functions in both the developing and adult brain. In this study, we investigated a potential direct role of TNFα in determining phenotypic changes of a recently established cellular model of human basal forebrain cholinergic neuroblasts isolated from the nucleus basalis of Meynert (hfNBMs). Exposing hfNBMs to TNFα reduced the expression of immature markers, such as nestin and ß-tubulin III, and inhibited primary cilium formation. On the contrary, TNFα increased the expression of TNFα receptor TNFR2 and the mature neuron marker MAP2, also promoting neurite elongation. Moreover, TNFα affected nerve growth factor receptor expression. We also found that TNFα induced the expression of DNA-methylation enzymes and, accordingly, downregulated genes involved in neuronal development through epigenetic mechanisms, as demonstrated by methylome analysis. In summary, TNFα showed a dual role on hfNBMs phenotypic plasticity, exerting a negative influence on neurogenesis despite a positive effect on differentiation, through mechanisms that remain to be elucidated. Our results help to clarify the complexity of TNFα effects in human neurons and suggest that manipulation of TNFα signaling could provide a potential therapeutic approach against neurodegenerative disorders.


Assuntos
Prosencéfalo Basal/citologia , Núcleo Basal de Meynert/citologia , Metilação de DNA , Fator de Necrose Tumoral alfa/metabolismo , Prosencéfalo Basal/efeitos dos fármacos , Prosencéfalo Basal/metabolismo , Núcleo Basal de Meynert/efeitos dos fármacos , Núcleo Basal de Meynert/metabolismo , Linhagem Celular , Neurônios Colinérgicos/citologia , Neurônios Colinérgicos/metabolismo , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/efeitos dos fármacos , Receptores de Fator de Crescimento Neural/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/farmacologia , Sequenciamento Completo do Genoma
7.
BMC Genomics ; 21(1): 385, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493210

RESUMO

BACKGROUND: Lipopolysaccharide (LPS) endotoxin stimulates pro-inflammatory pathways and is a key player in the pathological mechanisms involved in the development of endometritis. This study aimed to investigate LPS-induced DNA methylation changes in bovine endometrial epithelial cells (bEECs), which may affect endometrial function. Following in vitro culture, bEECs from three cows were either untreated (0) or exposed to 2 and 8 µg/mL LPS for 24 h. RESULTS: DNA samples extracted at 0 h and 24 h were sequenced using reduced representation bisulfite sequencing (RRBS). When comparing DNA methylation results at 24 h to time 0 h, a larger proportion of hypomethylated regions were identified in the LPS-treated groups, whereas the trend was opposite in controls. When comparing LPS groups to controls at 24 h, a total of 1291 differentially methylated regions (DMRs) were identified (55% hypomethylated and 45% hypermethylated). Integration of DNA methylation data obtained here with our previously published gene expression data obtained from the same samples showed a negative correlation (r = - 0.41 for gene promoter, r = - 0.22 for gene body regions, p < 0.05). Differential methylation analysis revealed that effects of LPS treatment were associated with methylation changes for genes involved in regulation of immune and inflammatory responses, cell adhesion, and external stimuli. Gene ontology and pathway analyses showed that most of the differentially methylated genes (DMGs) were associated with cell proliferation and apoptotic processes; and pathways such as calcium-, oxytocin- and MAPK-signaling pathways with recognized roles in innate immunity. Several DMGs were related to systemic inflammation and tissue re-modelling including HDAC4, IRAK1, AKT1, MAP3K6, Wnt7A and ADAMTS17. CONCLUSIONS: The present results show that LPS altered the DNA methylation patterns of bovine endometrial epithelial cells. This information, combined with our previously reported changes in gene expression related to endometrial function, confirm that LPS activates pro-inflammatory mechanisms leading to perturbed immune balance and cell adhesion processes in the endometrium.


Assuntos
Metilação de DNA/efeitos dos fármacos , Endométrio/citologia , Redes Reguladoras de Genes/efeitos dos fármacos , Lipopolissacarídeos/efeitos adversos , Análise de Sequência de DNA/veterinária , Animais , Bovinos , Células Cultivadas , Relação Dose-Resposta a Droga , Endométrio/química , Endométrio/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Lipopolissacarídeos/farmacologia , Regiões Promotoras Genéticas
8.
Genome Med ; 11(1): 84, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31847873

RESUMO

BACKGROUND: Maternal effect mutations in the components of the subcortical maternal complex (SCMC) of the human oocyte can cause early embryonic failure, gestational abnormalities and recurrent pregnancy loss. Enigmatically, they are also associated with DNA methylation abnormalities at imprinted genes in conceptuses: in the devastating gestational abnormality biparental complete hydatidiform mole (BiCHM) or in multi-locus imprinting disease (MLID). However, the developmental timing, genomic extent and mechanistic basis of these imprinting defects are unknown. The rarity of these disorders and the possibility that methylation defects originate in oocytes have made these questions very challenging to address. METHODS: Single-cell bisulphite sequencing (scBS-seq) was used to assess methylation in oocytes from a patient with BiCHM identified to be homozygous for an inactivating mutation in the human SCMC component KHDC3L. Genome-wide methylation analysis of a preimplantation embryo and molar tissue from the same patient was also performed. RESULTS: High-coverage scBS-seq libraries were obtained from five KHDC3Lc.1A>G oocytes, which revealed a genome-wide deficit of DNA methylation compared with normal human oocytes. Importantly, germline differentially methylated regions (gDMRs) of imprinted genes were affected similarly to other sequence features that normally become methylated in oocytes, indicating no selectivity towards imprinted genes. A range of methylation losses was observed across genomic features, including gDMRs, indicating variable sensitivity to defects in the SCMC. Genome-wide analysis of a pre-implantation embryo and molar tissue from the same patient showed that following fertilisation methylation defects at imprinted genes persist, while most non-imprinted regions of the genome recover near-normal methylation post-implantation. CONCLUSIONS: We show for the first time that the integrity of the SCMC is essential for de novo methylation in the female germline. These findings have important implications for understanding the role of the SCMC in DNA methylation and for the origin of imprinting defects, for counselling affected families, and will help inform future therapeutic approaches.


Assuntos
Blastocisto/metabolismo , Metilação de DNA , Mola Hidatiforme/patologia , Oócitos/metabolismo , Proteínas/genética , Neoplasias Uterinas/patologia , Adulto , Feminino , Humanos , Mola Hidatiforme/genética , Recidiva Local de Neoplasia , Placenta/metabolismo , Polimorfismo de Nucleotídeo Único , Gravidez , Análise de Sequência de DNA , Análise de Célula Única , Neoplasias Uterinas/genética
9.
Clin Epigenetics ; 11(1): 197, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856890

RESUMO

BACKGROUND: In vitro follicle culture (IFC), as applied in the mouse system, allows the growth and maturation of a large number of immature preantral follicles to become mature and competent oocytes. In the human oncofertility clinic, there is increasing interest in developing this technique as an alternative to ovarian cortical tissue transplantation and to preserve the fertility of prepubertal cancer patients. However, the effect of IFC and hormonal stimulation on DNA methylation in the oocyte is not fully known, and there is legitimate concern over epigenetic abnormalities that could be induced by procedures applied during assisted reproductive technology (ART). RESULTS: In this study, we present the first genome-wide analysis of DNA methylation in MII oocytes obtained after natural ovulation, after IFC and after superovulation. We also performed a comparison between prepubertal and adult hormonally stimulated oocytes. Globally, the distinctive methylation landscape of oocytes, comprising alternating hyper- and hypomethylated domains, is preserved irrespective of the procedure. The conservation of methylation extends to the germline differential methylated regions (DMRs) of imprinted genes, necessary for their monoallelic expression in the embryo. However, we do detect specific, consistent, and coherent differences in DNA methylation in IFC oocytes, and between oocytes obtained after superovulation from prepubertal compared with sexually mature females. Several methylation differences span entire transcription units. Among these, we found alterations in Tcf4, Sox5, Zfp521, and other genes related to nervous system development. CONCLUSIONS: Our observations show that IFC is associated with altered methylation at specific set of loci. DNA methylation of superovulated prepubertal oocytes differs from that of superovulated adult oocytes, whereas oocytes from superovulated adult females differ very little from naturally ovulated oocytes. Importantly, we show that regions other than imprinted gDMRs are susceptible to methylation changes associated with superovulation, IFC, and/or sexual immaturity in mouse oocytes. Our results provide an important reference for the use of in vitro growth and maturation of oocytes, particularly from prepubertal females, in assisted reproductive treatments or fertility preservation.


Assuntos
Metilação de DNA , Redes Reguladoras de Genes , Oócitos/crescimento & desenvolvimento , Técnicas de Reprodução Assistida/efeitos adversos , Animais , Modelos Animais de Doenças , Feminino , Impressão Genômica , Técnicas de Maturação in Vitro de Oócitos , Camundongos , Oócitos/química , Maturidade Sexual , Superovulação
10.
Genome Biol ; 20(1): 225, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31665063

RESUMO

BACKGROUND: Genomic imprinting is an epigenetic phenomenon that allows a subset of genes to be expressed mono-allelically based on the parent of origin and is typically regulated by differential DNA methylation inherited from gametes. Imprinting is pervasive in murine extra-embryonic lineages, and uniquely, the imprinting of several genes has been found to be conferred non-canonically through maternally inherited repressive histone modification H3K27me3. However, the underlying regulatory mechanisms of non-canonical imprinting in post-implantation development remain unexplored. RESULTS: We identify imprinted regions in post-implantation epiblast and extra-embryonic ectoderm (ExE) by assaying allelic histone modifications (H3K4me3, H3K36me3, H3K27me3), gene expression, and DNA methylation in reciprocal C57BL/6 and CAST hybrid embryos. We distinguish loci with DNA methylation-dependent (canonical) and independent (non-canonical) imprinting by assaying hybrid embryos with ablated maternally inherited DNA methylation. We find that non-canonical imprints are localized to endogenous retrovirus-K (ERVK) long terminal repeats (LTRs), which act as imprinted promoters specifically in extra-embryonic lineages. Transcribed ERVK LTRs are CpG-rich and located in close proximity to gene promoters, and imprinting status is determined by their epigenetic patterning in the oocyte. Finally, we show that oocyte-derived H3K27me3 associated with non-canonical imprints is not maintained beyond pre-implantation development at these elements and is replaced by secondary imprinted DNA methylation on the maternal allele in post-implantation ExE, while being completely silenced by bi-allelic DNA methylation in the epiblast. CONCLUSIONS: This study reveals distinct epigenetic mechanisms regulating non-canonical imprinted gene expression between embryonic and extra-embryonic development and identifies an integral role for ERVK LTR repetitive elements.


Assuntos
Impressão Genômica , Código das Histonas , Herança Materna , Retroviridae/fisiologia , Animais , Metilação de DNA , Feminino , Masculino , Camundongos , Sequências Repetidas Terminais
11.
Nat Struct Mol Biol ; 25(1): 73-82, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29323282

RESUMO

Histone 3 K4 trimethylation (depositing H3K4me3 marks) is typically associated with active promoters yet paradoxically occurs at untranscribed domains. Research to delineate the mechanisms of targeting H3K4 methyltransferases is ongoing. The oocyte provides an attractive system to investigate these mechanisms, because extensive H3K4me3 acquisition occurs in nondividing cells. We developed low-input chromatin immunoprecipitation to interrogate H3K4me3, H3K27ac and H3K27me3 marks throughout oogenesis. In nongrowing oocytes, H3K4me3 was restricted to active promoters, but as oogenesis progressed, H3K4me3 accumulated in a transcription-independent manner and was targeted to intergenic regions, putative enhancers and silent H3K27me3-marked promoters. Ablation of the H3K4 methyltransferase gene Mll2 resulted in loss of transcription-independent H3K4 trimethylation but had limited effects on transcription-coupled H3K4 trimethylation or gene expression. Deletion of Dnmt3a and Dnmt3b showed that DNA methylation protects regions from acquiring H3K4me3. Our findings reveal two independent mechanisms of targeting H3K4me3 to genomic elements, with MLL2 recruited to unmethylated CpG-rich regions independently of transcription.


Assuntos
Metilação de DNA , Histona-Lisina N-Metiltransferase/química , Histonas/química , Proteína de Leucina Linfoide-Mieloide/química , Animais , Imunoprecipitação da Cromatina , Ilhas de CpG , Feminino , Cadeias de Markov , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Embrionárias Murinas/citologia , Análise Multivariada , Oócitos/citologia , Oogênese , Regiões Promotoras Genéticas , Análise de Sequência de RNA , Transcrição Gênica
12.
Biol Reprod ; 97(2): 189-196, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29044423

RESUMO

A major limitation of embryo epigenotyping by chromatin immunoprecipitation analysis is the reduced amount of sample available from an embryo biopsy. We developed an in vitro system to expand trophectoderm cells from an embryo biopsy to overcome this limitation. This work analyzes whether expanded trophectoderm (EX) is representative of the trophectoderm (TE) methylation or adaptation to culture has altered its epigenome. We took a small biopsy from the trophectoderm (30-40 cells) of in vitro produced bovine-hatched blastocysts and cultured it on fibronectin-treated plates until we obtained ∼4 × 104 cells. The rest of the embryo was allowed to recover its spherical shape and, subsequently, TE and inner cell mass were separated. We examined whether there were DNA methylation differences between TE and EX of three bovine embryos using whole-genome bisulfite sequencing. As a consequence of adaptation to culture, global methylation, including transposable elements, was higher in EX, with 5.3% of quantified regions showing significant methylation differences between TE and EX. Analysis of individual embryos indicated that TE methylation is more similar to its EX counterpart than to TE from other embryos. Interestingly, these similarly methylated regions are enriched in CpG islands, promoters and transcription units near genes involved in biological processes important for embryo development. Our results indicate that EX is representative of the embryo in terms of DNA methylation, thus providing an informative proxy for embryo epigenotyping.


Assuntos
Blastocisto/metabolismo , Bovinos/embriologia , Metilação de DNA , Animais , Biópsia , Imunoprecipitação da Cromatina/veterinária , Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma
13.
Genome Biol ; 16: 209, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26408185

RESUMO

BACKGROUND: Previously, a role was demonstrated for transcription in the acquisition of DNA methylation at imprinted control regions in oocytes. Definition of the oocyte DNA methylome by whole genome approaches revealed that the majority of methylated CpG islands are intragenic and gene bodies are hypermethylated. Yet, the mechanisms by which transcription regulates DNA methylation in oocytes remain unclear. Here, we systematically test the link between transcription and the methylome. RESULTS: We perform deep RNA-Seq and de novo transcriptome assembly at different stages of mouse oogenesis. This reveals thousands of novel non-annotated genes, as well as alternative promoters, for approximately 10 % of reference genes expressed in oocytes. In addition, a large fraction of novel promoters coincide with MaLR and ERVK transposable elements. Integration with our transcriptome assembly reveals that transcription correlates accurately with DNA methylation and accounts for approximately 85-90 % of the methylome. We generate a mouse model in which transcription across the Zac1/Plagl1 locus is abrogated in oocytes, resulting in failure of DNA methylation establishment at all CpGs of this locus. ChIP analysis in oocytes reveals H3K4me2 enrichment at the Zac1 imprinted control region when transcription is ablated, establishing a connection between transcription and chromatin remodeling at CpG islands by histone demethylases. CONCLUSIONS: By precisely defining the mouse oocyte transcriptome, this work not only highlights transcription as a cornerstone of DNA methylation establishment in female germ cells, but also provides an important resource for developmental biology research.


Assuntos
Metilação de DNA , Oócitos/metabolismo , Transcriptoma , Animais , Proteínas de Ciclo Celular/genética , Montagem e Desmontagem da Cromatina , Ilhas de CpG , Elementos de DNA Transponíveis , Feminino , Perfilação da Expressão Gênica , Genes Supressores de Tumor , Impressão Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Transgênicos , Análise de Sequência de RNA , Fatores de Transcrição/genética , Sítio de Iniciação de Transcrição
14.
Nat Genet ; 47(5): 427-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25916897

RESUMO

A hallmark of CpG islands is their unmethylated state, and determining how DNA methylation can invade these elements is therefore important for understanding developmental gene regulation and disease. A new study shows that FBXL10, a protein commonly altered by mutation in leukemia, is part of a mechanism that blocks methylation of CpG islands.


Assuntos
Metilação de DNA , Proteínas F-Box/fisiologia , Histona Desmetilases com o Domínio Jumonji/fisiologia , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas , Animais , Masculino
15.
Cell Stem Cell ; 9(3): 177-8, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21885011

RESUMO

Imprinted genes are the prototypical epigenetically regulated genes. On the basis of findings in adult lung stem cells, Zacharek et al. (2011) suggest in this issue of Cell Stem Cell that epigenetic silencing of imprinted genes is a common requirement for maintaining self-renewal in adult stem cell populations.


Assuntos
Células-Tronco Adultas/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Animais , Complexo Repressor Polycomb 1
16.
Mol Cell Biol ; 31(15): 3182-94, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21646425

RESUMO

In pancreatic ß cells, elevated glucose concentrations stimulate mitochondrial oxidative metabolism to raise intracellular ATP/ADP levels, prompting insulin secretion. Unusually low levels of expression of genes encoding the plasma membrane monocarboxylate transporter, MCT1 (SLC16A1), as well as lactate dehydrogenase A (LDHA) ensure that glucose-derived pyruvate is efficiently metabolized by mitochondria, while exogenous lactate or pyruvate is unable to stimulate metabolism and hence insulin secretion inappropriately. We show here that whereas DNA methylation at the Mct1 promoter is unlikely to be involved in cell-type-specific transcriptional repression, three microRNAs (miRNAs), miR-29a, miR-29b, and miR-124, selectively target both human and mouse MCT1 3' untranslated regions. Mutation of the cognate miR-29 or miR-124 binding sites abolishes the effects of the corresponding miRNAs, demonstrating a direct action of these miRNAs on the MCT1 message. However, despite reports of its expression in the mouse ß-cell line MIN6, miR-124 was not detectably expressed in mature mouse islets. In contrast, the three isoforms of miR-29 are highly expressed and enriched in mouse islets. We show that inhibition of miR-29a in primary mouse islets increases Mct1 mRNA levels, demonstrating that miR-29 isoforms contribute to the ß-cell-specific silencing of the MCT1 transporter and may thus affect insulin release.


Assuntos
Células Secretoras de Insulina/metabolismo , MicroRNAs/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Simportadores/genética , Regiões 3' não Traduzidas , Animais , Linhagem Celular Tumoral , Metilação de DNA , Glucose/metabolismo , Células HEK293 , Humanos , Insulina/biossíntese , Insulina/metabolismo , Secreção de Insulina , Isoenzimas/biossíntese , Isoenzimas/genética , L-Lactato Desidrogenase/biossíntese , L-Lactato Desidrogenase/genética , Lactato Desidrogenase 5 , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Mitocôndrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/biossíntese , Mutação , Pâncreas , Regiões Promotoras Genéticas , Ligação Proteica , Ácido Pirúvico/metabolismo , Interferência de RNA , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simportadores/biossíntese , Transcrição Gênica
17.
Endocr Res ; 34(1-2): 1-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19557586

RESUMO

INTRODUCTION: The heterotrimeric G protein alpha-subunit G(s)alpha links receptors to stimulation of cAMP/protein kinase A signaling, which inhibits skin fibroblast proliferation and collagen synthesis. We now describe the development of fibrous tumors in mice with heterozygous disruption of the Gnas gene, which encodes G(s)alpha and other gene products. METHODS AND RESULTS: Disruption of Gnas exon 2 on either the maternal or paternal allele (Gnas(E2-/+)) results in fibromas or angiofibromas on the ears, paws and tail beginning at 4 months of age. The tumors were composed of fibroblastic cell proliferation with collagen and elastin deposition and calcification, and seemed to be associated with mechanical skin damage. The presence of calcification was associated with greater amounts of matrix metalloproteinase-2, suggesting an association between calcium deposition and extracellular matrix degradation. Osteoblast-specific markers were absent, consistent with the calcification not being secondary to ossification. Molecular studies showed that the tumors were not associated with deletion of the wild-type allele, making it unlikely that these tumors resulted from homozygous loss of G(s)alpha. CONCLUSIONS: These findings provide in vivo evidence that G(s)alpha pathways inhibit fibroblast and endothelial proliferation and matrix deposition.


Assuntos
Angiofibroma/genética , Colágeno/metabolismo , Elastina/metabolismo , Fibroma/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Neoplasias Cutâneas/genética , Angiofibroma/patologia , Angiofibroma/fisiopatologia , Animais , Calcinose/etiologia , Cromograninas , Fibroma/patologia , Fibroma/fisiopatologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/fisiologia , Camundongos , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/fisiopatologia
18.
Horm Res ; 71 Suppl 2: 22-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19407493

RESUMO

The hallmarks of epigenetics--the memory of defining earlier developmental events and the distinction of active and inactive genes--are exemplified by imprinted genes. In this article, I shall consider the imprinted Gnas locus in some detail. Gnas encodes the stimulatory G-protein subunit, Gsalpha, an essential intermediate between receptor coupling and cyclic adenosine monophosphate generation. It provides an excellent illustration of the pleiotropic effects of imprinted genes, particularly on skeletal growth and metabolism, and is a powerful example of the conflicting effects of imprinted genes with opposing patterns of imprinting. I shall describe the effects of Gsalpha deficiency in humans and the knowledge gained from genetic manipulation in the mouse. Finally, given the pervasive effects of imprinted genes, I shall discuss the likelihood that epigenetic deregulation, for example of imprinted genes, could contribute to the developmental programming of chronic adult diseases.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Impressão Genômica , Transtornos do Crescimento/genética , Locos de Características Quantitativas/genética , Adulto , Animais , Doença Crônica , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Transtornos do Crescimento/metabolismo , Humanos , Camundongos
19.
J Endocrinol ; 196(2): 193-214, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18252944

RESUMO

The stimulatory alpha-subunit of trimeric G-proteins Galpha(s), which upon ligand binding to seven-transmembrane receptors activates adenylyl cyclases to produce the second messenger cAMP, constitutes one of the archetypal signal transduction molecules that have been studied in much detail. Over the past few years, however, genetic as well as biochemical approaches have led to a range of novel insights into the Galpha(s) encoding guanine nucleotide binding protein, alpha-stimulating (Gnas) locus, its alternative protein products and its regulation by genomic imprinting, which leads to monoallelic, parental origin-dependent expression of the various transcripts. Here, we summarise the major characteristics of this complex gene locus and describe the physiological roles of Galpha(s) and its 'extra large' variant XLalpha(s) at post-natal and adult stages as defined by genetic mutations. Opposite and potentially antagonistic functions of the two proteins in the regulation of energy homeostasis and metabolism have been identified in Gnas- and Gnasxl (XLalpha(s))-deficient mice, which are characterised by obesity and leanness respectively. A comparison of findings in mice with symptoms of the corresponding human genetic disease 'Albright's hereditary osteodystrophy'/'pseudohypoparathyroidism' indicates highly conserved functions as well as unresolved phenotypic differences.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/fisiologia , Variação Genética , Impressão Genômica , Processamento Alternativo , Animais , Cromograninas , AMP Cíclico/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Humanos , Camundongos , Regiões Promotoras Genéticas , Transdução de Sinais/fisiologia
20.
Hum Mol Genet ; 16(21): 2591-9, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17704508

RESUMO

Genomic imprinting is the epigenetic marking of gene subsets resulting in monoallelic or predominant expression of one of the two parental alleles according to their parental origin. We describe the systematic experimental verification of a prioritized 16 candidate imprinted gene set predicted by sequence-based bioinformatic analyses. We used Quantification of Allele-Specific Expression by Pyrosequencing (QUASEP) and discovered maternal-specific imprinted expression of the Kcnk9 gene as well as strain-dependent preferential expression of the Rarres1 gene in E11.5 (C57BL/6 x Cast/Ei)F1 and informative (C57BL/6 x Cast/Ei) x C57BL/6 backcross mouse embryos. For the remaining 14 candidate imprinted genes, we observed biallelic expression. In adult mouse tissues, we found that Kcnk9 expression was restricted to the brain and also was maternal-specific. QUASEP analysis of informative human fetal brain samples further demonstrated maternal-specific imprinted expression of the human KCNK9 orthologue. The CpG islands associated with the mouse and human Kcnk9/KCNK9 genes were not differentially methylated, but strongly hypomethylated. Thus, we speculate that mouse Kcnk9 imprinting may be regulated by the maternal germline differentially methylated region in Peg13, an imprinted non-coding RNA gene in close proximity to Kcnk9 on distal mouse chromosome 15. Our data have major implications for the proposed role of Kcnk9 in neurodevelopment, apoptosis and tumourigenesis, as well as for the efficiency of sequence-based bioinformatic predictions of novel imprinted genes.


Assuntos
Impressão Genômica , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio/genética , Animais , Sequência de Bases , Encéfalo/metabolismo , Biologia Computacional , Ilhas de CpG , Metilação de DNA , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polimorfismo de Nucleotídeo Único , Canais de Potássio/fisiologia , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA