Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6235, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266275

RESUMO

Peptides play important roles in regulating biological processes and form the basis of a multiplicity of therapeutic drugs. To date, only about 300 peptides in human have confirmed bioactivity, although tens of thousands have been reported in the literature. The majority of these are inactive degradation products of endogenous proteins and peptides, presenting a needle-in-a-haystack problem of identifying the most promising candidate peptides from large-scale peptidomics experiments to test for bioactivity. To address this challenge, we conducted a comprehensive analysis of the mammalian peptidome across seven tissues in four different mouse strains and used the data to train a machine learning model that predicts hundreds of peptide candidates based on patterns in the mass spectrometry data. We provide in silico validation examples and experimental confirmation of bioactivity for two peptides, demonstrating the utility of this resource for discovering lead peptides for further characterization and therapeutic development.


Assuntos
Aprendizado de Máquina , Peptídeos , Humanos , Camundongos , Animais , Espectrometria de Massas , Peptídeos/química , Mamíferos
2.
Cell ; 179(2): 543-560.e26, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585087

RESUMO

Tyrosine phosphorylation regulates multi-layered signaling networks with broad implications in (patho)physiology, but high-throughput methods for functional annotation of phosphotyrosine sites are lacking. To decipher phosphotyrosine signaling directly in tissue samples, we developed a mass-spectrometry-based interaction proteomics approach. We measured the in vivo EGF-dependent signaling network in lung tissue quantifying >1,000 phosphotyrosine sites. To assign function to all EGF-regulated sites, we determined their recruited protein signaling complexes in lung tissue by interaction proteomics. We demonstrated how mutations near tyrosine residues introduce molecular switches that rewire cancer signaling networks, and we revealed oncogenic properties of such a lung cancer EGFR mutant. To demonstrate the scalability of the approach, we performed >1,000 phosphopeptide pulldowns and analyzed them by rapid mass spectrometric analysis, revealing tissue-specific differences in interactors. Our approach is a general strategy for functional annotation of phosphorylation sites in tissues, enabling in-depth mechanistic insights into oncogenic rewiring of signaling networks.


Assuntos
Carcinogênese/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fosfotirosina/metabolismo , Células A549 , Animais , Humanos , Espectrometria de Massas/métodos , Mutação , Fosfoproteínas/metabolismo , Fosforilação , Proteômica , Ratos , Ratos Sprague-Dawley , Peixe-Zebra
3.
J Proteome Res ; 17(11): 4008-4016, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30220210

RESUMO

A popular method for peptide quantification relies on isobaric labeling such as tandem mass tags (TMT), which enables multiplexed proteome analyses. Quantification is achieved by reporter ions generated by fragmentation in a tandem mass spectrometer. However, with higher degrees of multiplexing, the smaller mass differences between the reporter ions increase the mass resolving power requirements. This contrasts with faster peptide sequencing capabilities enabled by lowered mass resolution on Orbitrap instruments. It is therefore important to determine the mass resolution limits for highly multiplexed quantification when maximizing proteome depth. Here, we defined the lower boundaries for resolving TMT reporter ions with 0.0063 Da mass differences using an ultra-high-field Orbitrap mass spectrometer. We found the optimal method depends on the relative ratio between closely spaced reporter ions and that 64 ms transient acquisition time provided sufficient resolving power for separating TMT reporter ions with absolute ratio changes up to 16-fold. Furthermore, a 32 ms transient processed with phase-constrained spectrum deconvolution provides >50% more identifications with >99% quantified but with a slight loss in quantification precision and accuracy. These findings should guide decisions on what Orbitrap resolution settings to use in future proteomics experiments, relying on isobaric TMT reporter ion quantification.


Assuntos
Peptídeos/análise , Proteoma/isolamento & purificação , Proteômica/métodos , Coloração e Rotulagem/métodos , Espectrometria de Massas em Tandem/métodos , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/química , Células Epiteliais/citologia , Células HeLa , Humanos , Íons , Células Jurkat , Neurônios/química , Neurônios/patologia , Osteoblastos/química , Osteoblastos/patologia , Proteólise , Proteoma/genética , Proteoma/metabolismo , Epitélio Pigmentado da Retina/química , Epitélio Pigmentado da Retina/citologia
4.
Anal Chem ; 90(13): 8202-8210, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29878755

RESUMO

Disulfide bond mapping is a critical task in protein characterization as protein stability, structure, and function is dependent on correct cysteine connectivities. Mass spectrometry (MS) is the method of choice for this, providing fast and accurate characterization of simple disulfide bonds. Disulfide mapping by liquid chromatography tandem mass spectrometry (LC-MS/MS) is performed by identifying disulfide-bonded partner peptides following proteolytic digestion. With the recently introduced ability to assign complex disulfide patterns by online postcolumn partial disulfide reduction by in-source reduction (ISR) in a LC-ISR-MS/MS methodology, the main challenge is data analysis to ensure detection of both expected and unexpected disulfide species. In this study, we introduced a workflow for confident and unbiased mapping of complex disulfide bonds using the powerful combination of extracted ion chromatograms (XICs) of LC-ISR-MS/MS data. With postcolumn partial reduction, identical LC retention times of intact disulfide-bonded species, their constituting free peptides, and partially reduced variants were observed. Subsequent selective MS/MS fragmentation of all reduction products allowed confident identification of free cysteine-containing peptides using a classical shotgun proteomics database search. Matching XICs of the identified cysteine-containing peptides allowed identification of both predicted and unpredicted disulfide species, including unforeseen proteolytic specificities, missed cleavage sites, scrambled disulfide variants, and the presence of disulfide-entangled complexes. Applying this workflow, we successfully mapped the complex disulfide bonds of tertiapin and the epidermal growth factor (EGF) family members transforming growth factor α (TGFα) and EGF. In addition, we were able to characterize the disulfide patterns of the special disulfide fold of the TGFß superfamily in an all-online methodology.


Assuntos
Cromatografia Líquida/métodos , Dissulfetos/química , Espectrometria de Massas em Tandem/métodos , Fluxo de Trabalho , Sequência de Aminoácidos , Modelos Moleculares , Peptídeo Hidrolases/metabolismo , Estrutura Secundária de Proteína , Fator de Crescimento Transformador beta/química , Fator de Crescimento Transformador beta/metabolismo
5.
Cell Syst ; 4(6): 587-599.e4, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28601559

RESUMO

This study investigates the challenge of comprehensively cataloging the complete human proteome from a single-cell type using mass spectrometry (MS)-based shotgun proteomics. We modify a classical two-dimensional high-resolution reversed-phase peptide fractionation scheme and optimize a protocol that provides sufficient peak capacity to saturate the sequencing speed of modern MS instruments. This strategy enables the deepest proteome of a human single-cell type to date, with the HeLa proteome sequenced to a depth of ∼584,000 unique peptide sequences and ∼14,200 protein isoforms (∼12,200 protein-coding genes). This depth is comparable with next-generation RNA sequencing and enables the identification of post-translational modifications, including ∼7,000 N-acetylation sites and ∼10,000 phosphorylation sites, without the need for enrichment. We further demonstrate the general applicability and clinical potential of this proteomics strategy by comprehensively quantifying global proteome expression in several different human cancer cell lines and patient tissue samples.


Assuntos
Proteoma/metabolismo , Proteômica/métodos , Células A549 , Acetilação , Linhagem Celular , Linhagem Celular Tumoral , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Espectrometria de Massas/métodos , Peptídeos/metabolismo , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas/metabolismo
6.
Anal Chem ; 89(11): 5949-5957, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28453249

RESUMO

Mapping of disulfide bonds is an essential part of protein characterization to ensure correct cysteine pairings. For this, mass spectrometry (MS) is the most widely used technique due to fast and accurate characterization. However, MS-based disulfide mapping is challenged when multiple disulfide bonds are present in complicated patterns. This includes the presence of disulfide bonds in nested patterns and closely spaced cysteines. Unambiguous mapping of such disulfide bonds typically requires advanced MS approaches. In this study, we exploited in-source reduction (ISR) of disulfide bonds during the electrospray ionization process to facilitate disulfide bond assignments. We successfully developed a LC-ISR-MS/MS methodology to use as an online and fully automated partial reduction procedure. Postcolumn partial reduction by ISR provided fast and easy identification of peptides involved in disulfide bonding from nonreduced proteolytic digests, due to the concurrent detection of disulfide-containing peptide species and their composing free peptides. Most importantly, intermediate partially reduced species containing only a single disulfide bond were also generated, from which unambiguous assignment of individual disulfide bonds could be done in species containing closely spaced disulfide bonds. The strength of this methodology was demonstrated by complete mapping of all four disulfide bonds in lysozyme and all 17 disulfide bonds in human serum albumin, including nested disulfide bonds and motifs of adjacent cysteine residues.

7.
J Proteome Res ; 13(12): 6187-95, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25349961

RESUMO

Shotgun proteomics is a powerful technology for global analysis of proteins and their post-translational modifications. Here, we investigate the faster sequencing speed of the latest Q Exactive HF mass spectrometer, which features an ultra-high-field Orbitrap mass analyzer. Proteome coverage is evaluated by four different acquisition methods and benchmarked across three generations of Q Exactive instruments (ProteomeXchange data set PXD001305). We find the ultra-high-field Orbitrap mass analyzer to be capable of attaining a sequencing speed above 20 Hz, and it routinely exceeds 10 peptide spectrum matches per second or up to 600 new peptides sequenced per gradient minute. We identify 4400 proteins from 1 µg of HeLa digest using a 1 h gradient, which is an approximately 30% improvement compared to that with previous instrumentation. In addition, we show that very deep proteome coverage can be achieved in less than 24 h of analysis time by offline high-pH reversed-phase peptide fractionation, from which we identify more than 140,000 unique peptide sequences. This is comparable to state-of-the-art multiday, multienzyme efforts. Finally, the acquisition methods are evaluated for single-shot phosphoproteomics, where we identify 7600 unique HeLa phosphopeptides in one gradient hour and find the quality of fragmentation spectra to be more important than quantity for accurate site assignment.


Assuntos
Espectrometria de Massas/métodos , Peptídeos/análise , Proteoma/análise , Proteômica/métodos , Benchmarking/métodos , Fracionamento Químico , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Peptídeos/metabolismo , Proteoma/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de Proteína/métodos
8.
PLoS One ; 9(9): e106875, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25260035

RESUMO

Denmark has an extraordinarily large and well-preserved collection of archaeological skin garments found in peat bogs, dated to approximately 920 BC - AD 775. These objects provide not only the possibility to study prehistoric skin costume and technologies, but also to investigate the animal species used for the production of skin garments. Until recently, species identification of archaeological skin was primarily performed by light and scanning electron microscopy or the analysis of ancient DNA. However, the efficacy of these methods can be limited due to the harsh, mostly acidic environment of peat bogs leading to morphological and molecular degradation within the samples. We compared species assignment results of twelve archaeological skin samples from Danish bogs using Mass Spectrometry (MS)-based peptide sequencing, against results obtained using light and scanning electron microscopy. While it was difficult to obtain reliable results using microscopy, MS enabled the identification of several species-diagnostic peptides, mostly from collagen and keratins, allowing confident species discrimination even among taxonomically close organisms, such as sheep and goat. Unlike previous MS-based methods, mostly relying on peptide fingerprinting, the shotgun sequencing approach we describe aims to identify the complete extracted ancient proteome, without preselected specific targets. As an example, we report the identification, in one of the samples, of two peptides uniquely assigned to bovine foetal haemoglobin, indicating the production of skin from a calf slaughtered within the first months of its life. We conclude that MS-based peptide sequencing is a reliable method for species identification of samples from bogs. The mass spectrometry proteomics data were deposited in the ProteomeXchange Consortium with the dataset identifier PXD001029.


Assuntos
Arqueologia , Pele/química , Dinamarca , Geografia , Espectrometria de Massas , Microscopia , Peptídeos/química
9.
Mol Cell Proteomics ; 13(8): 1914-24, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24895383

RESUMO

Unambiguous identification of tandem mass spectra is a cornerstone in mass-spectrometry-based proteomics. As the study of post-translational modifications (PTMs) by means of shotgun proteomics progresses in depth and coverage, the ability to correctly identify PTM-bearing peptides is essential, increasing the demand for advanced data interpretation. Several PTMs are known to generate unique fragment ions during tandem mass spectrometry, the so-called diagnostic ions, which unequivocally identify a given mass spectrum as related to a specific PTM. Although such ions offer tremendous analytical advantages, algorithms to decipher MS/MS spectra for the presence of diagnostic ions in an unbiased manner are currently lacking. Here, we present a systematic spectral-pattern-based approach for the discovery of diagnostic ions and new fragmentation mechanisms in shotgun proteomics datasets. The developed software tool is designed to analyze large sets of high-resolution peptide fragmentation spectra independent of the fragmentation method, instrument type, or protease employed. To benchmark the software tool, we analyzed large higher-energy collisional activation dissociation datasets of samples containing phosphorylation, ubiquitylation, SUMOylation, formylation, and lysine acetylation. Using the developed software tool, we were able to identify known diagnostic ions by comparing histograms of modified and unmodified peptide spectra. Because the investigated tandem mass spectra data were acquired with high mass accuracy, unambiguous interpretation and determination of the chemical composition for the majority of detected fragment ions was feasible. Collectively we present a freely available software tool that allows for comprehensive and automatic analysis of analogous product ions in tandem mass spectra and systematic mapping of fragmentation mechanisms related to common amino acids.


Assuntos
Peptídeos/química , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Algoritmos , Bases de Dados de Proteínas , Íons , Processamento de Proteína Pós-Traducional , Software
10.
Mol Cell ; 53(6): 1053-66, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24582501

RESUMO

Loss of small ubiquitin-like modification (SUMOylation) in mice causes genomic instability due to the missegregation of chromosomes. Currently, little is known about the identity of relevant SUMO target proteins that are involved in this process and about global SUMOylation dynamics during cell-cycle progression. We performed a large-scale quantitative proteomics screen to address this and identified 593 proteins to be SUMO-2 modified, including the Forkhead box transcription factor M1 (FoxM1), a key regulator of cell-cycle progression and chromosome segregation. SUMOylation of FoxM1 peaks during G2 and M phase, when FoxM1 transcriptional activity is required. We found that a SUMOylation-deficient FoxM1 mutant was less active compared to wild-type FoxM1, implying that SUMOylation of the protein enhances its transcriptional activity. Mechanistically, SUMOylation blocks the dimerization of FoxM1, thereby relieving FoxM1 autorepression. Cells deficient for FoxM1 SUMOylation showed increased levels of polyploidy. Our findings contribute to understanding the role of SUMOylation during cell-cycle progression.


Assuntos
Ciclo Celular/genética , Segregação de Cromossomos , Fatores de Transcrição Forkhead/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Transcrição Gênica , Sequência de Aminoácidos , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Instabilidade Genômica , Células HeLa , Humanos , Dados de Sequência Molecular , Multimerização Proteica , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação
11.
Sci Signal ; 6(278): rs11, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23737553

RESUMO

ß-Blockers are widely used to prevent cardiac arrhythmias and to treat hypertension by inhibiting ß-adrenergic receptors (ßARs) and thus decreasing contractility and heart rate. ßARs initiate phosphorylation-dependent signaling cascades, but only a small number of the target proteins are known. We used quantitative in vivo phosphoproteomics to identify 670 site-specific phosphorylation changes in murine hearts in response to acute treatment with specific ßAR agonists. The residues adjacent to the regulated phosphorylation sites exhibited a sequence-specific preference (R-X-X-pS/T), and integrative analysis of sequence motifs and interaction networks suggested that the kinases AMPK (adenosine 5'-monophosphate-activated protein kinase), Akt, and mTOR (mammalian target of rapamycin) mediate ßAR signaling, in addition to the well-established pathways mediated by PKA (cyclic adenosine monophosphate-dependent protein kinase) and CaMKII (calcium/calmodulin-dependent protein kinase type II). We found specific regulation of phosphorylation sites on six ion channels and transporters that mediate increased ion fluxes at higher heart rates, and we showed that phosphorylation of one of these, Ser(92) of the potassium channel KV7.1, increased current amplitude. Our data set represents a quantitative analysis of phosphorylated proteins regulated in vivo upon stimulation of seven-transmembrane receptors, and our findings reveal previously unknown phosphorylation sites that regulate myocardial contractility, suggesting new potential targets for the treatment of heart disease and hypertension.


Assuntos
Coração/fisiologia , Fosfoproteínas/química , Proteômica , Receptores Adrenérgicos beta/fisiologia , Transdução de Sinais , Animais , Camundongos
12.
Mol Cell Biol ; 31(24): 4964-77, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22006019

RESUMO

Cellular responses to DNA-damaging agents involve the activation of various DNA damage signaling and transduction pathways. Using quantitative and high-resolution tandem mass spectrometry, we determined global changes in protein level and phosphorylation site profiles following treatment of SILAC (stable isotope labeling by amino acids in cell culture)-labeled murine embryonic stem cells with the anticancer drug cisplatin. Network and pathway analyses indicated that processes related to the DNA damage response and cytoskeleton organization were significantly affected. Although the ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related) consensus sequence (S/T-Q motif) was significantly overrepresented among hyperphosphorylated peptides, about half of the >2-fold-upregulated phosphorylation sites based on the consensus sequence were not direct substrates of ATM and ATR. Eleven protein kinases mainly belonging to the mitogen-activated protein kinase (MAPK) family were identified as being regulated in their kinase domain activation loop. The biological importance of three of these kinases (cyclin-dependent kinase 7 [CDK7], Plk1, and KPCD1) in the protection against cisplatin-induced cytotoxicity was demonstrated by small interfering RNA (siRNA)-mediated knockdown. Our results indicate that the cellular response to cisplatin involves a variety of kinases and phosphatases not only acting in the nucleus but also regulating cytoplasmic targets, resulting in extensive cytoskeletal rearrangements. Integration of transcriptomic and proteomic data revealed a poor correlation between changes in the relative levels of transcripts and their corresponding proteins, but a large overlap in affected pathways at the levels of mRNA, protein, and phosphoprotein. This study provides an integrated view of pathways activated by genotoxic stress and deciphers kinases that play a pivotal role in regulating cellular processes other than the DNA damage response.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Dano ao DNA , Perfilação da Expressão Gênica/métodos , Animais , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Células-Tronco Embrionárias/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Proteômica/métodos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA