Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(2): e1010268, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35120176

RESUMO

Next generation sequencing has revealed the presence of numerous RNA viruses in animal reservoir hosts, including many closely related to known human pathogens. Despite their zoonotic potential, most of these viruses remain understudied due to not yet being cultured. While reverse genetic systems can facilitate virus rescue, this is often hindered by missing viral genome ends. A prime example is Lloviu virus (LLOV), an uncultured filovirus that is closely related to the highly pathogenic Ebola virus. Using minigenome systems, we complemented the missing LLOV genomic ends and identified cis-acting elements required for LLOV replication that were lacking in the published sequence. We leveraged these data to generate recombinant full-length LLOV clones and rescue infectious virus. Similar to other filoviruses, recombinant LLOV (rLLOV) forms filamentous virions and induces the formation of characteristic inclusions in the cytoplasm of the infected cells, as shown by electron microscopy. Known target cells of Ebola virus, including macrophages and hepatocytes, are permissive to rLLOV infection, suggesting that humans could be potential hosts. However, inflammatory responses in human macrophages, a hallmark of Ebola virus disease, are not induced by rLLOV. Additional tropism testing identified pneumocytes as capable of robust rLLOV and Ebola virus infection. We also used rLLOV to test antivirals targeting multiple facets of the replication cycle. Rescue of uncultured viruses of pathogenic concern represents a valuable tool in our arsenal for pandemic preparedness.


Assuntos
Ebolavirus/genética , Infecções por Filoviridae/virologia , Filoviridae/genética , Replicação Viral , Animais , Linhagem Celular , Chlorocebus aethiops , Teste de Complementação Genética , Genoma Viral , Doença pelo Vírus Ebola/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Corpos de Inclusão/virologia , Células-Tronco Pluripotentes Induzidas/virologia , Macrófagos/virologia , RNA Viral , Genética Reversa , Células Vero , Vírion/genética
2.
Geroscience ; 42(5): 1229-1236, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32766998

RESUMO

Coronavirus disease 2019 (COVID-19) is a highly contagious infectious disease caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). From the epidemiological data, the picture emerges that the more severe etiopathologies among COVID-19 patients are found in elderly people. The risk of death due to COVID-19 increases exponentially with age. Eight out of 10 COVID-19 related deaths occur in people older than 65 years of age. Older patients with comorbid conditions such as hypertension, heart failure, diabetes mellitus, asthma, chronic obstructive pulmonary disease, and cancer have a much higher case fatality rate. Governments and public health authorities all over the world have realized that protections of vulnerable older adults should be a priority during the COVID-19 pandemic. COVID-19 is a zoonotic disease. The SARS-CoV-2 virus was originally transmitted likely from a bat or a pangolin to humans. Recent evidence suggests that SARS-CoV-2, similar to other coronaviruses, can infect several species of animals, including companion animals such as dogs, cats, and ferrets although their viral loads remain low. While the main source of infection transmission therefore is human to human, there are a few rare cases of pets contracting the infection from a SARS-CoV-2-infected human. Although there is no evidence that pets actively transmit SARS-CoV-2 via animal-to-human transmission, senior pet ownership potentially may pose a small risk to older adults by (1) potentially enabling animal-to-human transmission of SARS-CoV-2 in the most vulnerable population and (2) by increasing the exposition risk for the elderly due to the necessity to care for the pet and, in the case of dogs, to take them outside the house several times per day. In this overview, the available evidence on SARS-CoV-2 infection in pets is considered and the potential for spread of COVID-19 from companion animals to older individuals and the importance of prevention are discussed.


Assuntos
Betacoronavirus , Infecções por Coronavirus/transmissão , Transmissão de Doença Infecciosa/estatística & dados numéricos , Pandemias , Pneumonia Viral/transmissão , Zoonoses/transmissão , Animais , COVID-19 , Infecções por Coronavirus/epidemiologia , Humanos , Pneumonia Viral/epidemiologia , SARS-CoV-2 , Zoonoses/epidemiologia
3.
Virus Genes ; 56(4): 508-514, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32335793

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic agent. Thus far, vaccines and specific antiviral therapies are not available against the threat of infection. Our knowledge regarding its pathogenesis is indeed limited, and thus, developing effective antiviral therapies is hampered. Several studies have demonstrated that the CCHFV infection has an impact on numerous signal transduction pathways. In parallel, the Wnt signaling pathway components are responsible for different important biological processes including cell fate determination, cell migration and cell polarity. Moreover, its implication among several virus infections has been proven, yet little is known in reference to which components of the Wnt pathway are being activated/inhibited as a response to the infection. Our aim was to elicit the influence of the CCHFV infection on adenocarcinomic human alveolar basal epithelial cells in vitro regarding the Wnt signaling pathway-related genes. Gene-expression changes of 92 Wnt-associated genes were examined 48 h post-infection. Furthermore, ß-catenin levels were compared in the infected and uninfected cells. Significant changes were observed in the case of 13 genes. The majority of the upregulated genes are associated with the inhibition of the Wnt/ß-catenin signaling. Additionally, infected cells expressed less ß-catenin. Our findings suggest that CCHFV blocks the Wnt/ß-catenin pathway. Our study corroborates the link between CCHFV infection and the Wnt signaling pathways. In addition, it broadens our knowledge in the CCHFV pathomechanism.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/genética , Replicação Viral/genética , Via de Sinalização Wnt/genética , Animais , Linhagem Celular Tumoral , Regulação Viral da Expressão Gênica/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/patogenicidade , Febre Hemorrágica da Crimeia/virologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA