Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 19(4): 2280-2290, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30775927

RESUMO

Cancer cell invasion through physical barriers in the extracellular matrix (ECM) requires a complex synergy of traction force against the ECM, mechanosensitive feedback, and subsequent cytoskeletal rearrangement. PDMS microchannels were used to investigate the transition from mesenchymal to amoeboid invasion in cancer cells. Migration was faster in narrow 3 µm-wide channels than in wider 10 µm channels, even in the absence of cell-binding ECM proteins. Cells permeating narrow channels exhibited blebbing and had smooth leading edge profiles, suggesting an ECM-induced transition from mesenchymal invasion to amoeboid invasion. Live cell labeling revealed a mechanosensing period in which the cell attempts mesenchymal-based migration, reorganizes its cytoskeleton, and proceeds using an amoeboid phenotype. Rho/ROCK (amoeboid) and Rac (mesenchymal) pathway inhibition revealed that amoeboid invasion through confined environments relies on both pathways in a time- and ECM-dependent manner. This demonstrates that cancer cells can dynamically modify their invasion programming to navigate physically confining matrix conditions.


Assuntos
Citoesqueleto/efeitos dos fármacos , Mesoderma/efeitos dos fármacos , Invasividade Neoplásica/genética , Neoplasias/genética , Fenômenos Biomecânicos , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Citoesqueleto/genética , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/genética , Humanos , Mesoderma/patologia , Invasividade Neoplásica/patologia , Neoplasias/patologia , Nylons/química , Nylons/farmacologia
2.
Exp Gerontol ; 103: 35-46, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29269268

RESUMO

Perivascular stromal cells, including mesenchymal stem/stromal cells (MSCs), secrete paracrine factor in response to exercise training that can facilitate improvements in muscle remodeling. This study was designed to test the capacity for muscle-resident MSCs (mMSCs) isolated from young mice to release regenerative proteins in response to mechanical strain in vitro, and subsequently determine the extent to which strain-stimulated mMSCs can enhance skeletal muscle and cognitive performance in a mouse model of uncomplicated aging. Protein arrays confirmed a robust increase in protein release at 24h following an acute bout of mechanical strain in vitro (10%, 1Hz, 5h) compared to non-strain controls. Aged (24month old), C57BL/6 mice were provided bilateral intramuscular injection of saline, non-strain control mMSCs, or mMSCs subjected to a single bout of mechanical strain in vitro (4×104). No significant changes were observed in muscle weight, myofiber size, maximal force, or satellite cell quantity at 1 or 4wks between groups. Peripheral perfusion was significantly increased in muscle at 4wks post-mMSC injection (p<0.05), yet no difference was noted between control and preconditioned mMSCs. Intramuscular injection of preconditioned mMSCs increased the number of new neurons and astrocytes in the dentate gyrus of the hippocampus compared to both control groups (p<0.05), with a trend toward an increase in water maze performance noted (p=0.07). Results from this study demonstrate that acute injection of exogenously stimulated muscle-resident stromal cells do not robustly impact aged muscle structure and function, yet increase the survival of new neurons in the hippocampus.


Assuntos
Envelhecimento/fisiologia , Transplante de Células-Tronco Mesenquimais , Músculo Esquelético/fisiologia , Neurônios/fisiologia , Animais , Feminino , Hipocampo/patologia , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Condicionamento Físico Animal , Estresse Mecânico
3.
Sci Rep ; 7: 45152, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338091

RESUMO

The interactions between a cancer cell and its extracellular matrix (ECM) have been the focus of an increasing amount of investigation. The role of the intermediate filament keratin in cancer has also been coming into focus of late, but more research is needed to understand how this piece fits in the puzzle of cytoskeleton-mediated invasion and metastasis. In Panc-1 invasive pancreatic cancer cells, keratin phosphorylation in conjunction with actin inhibition was found to be sufficient to reduce cell area below either treatment alone. We then analyzed intersecting keratin and actin fibers in the cytoskeleton of cyclically stretched cells and found no directional correlation. The role of keratin organization in Panc-1 cellular morphological adaptation and directed migration was then analyzed by culturing cells on cyclically stretched polydimethylsiloxane (PDMS) substrates, nanoscale grates, and rigid pillars. In general, the reorganization of the keratin cytoskeleton allows the cell to become more 'mobile'- exhibiting faster and more directed migration and orientation in response to external stimuli. By combining keratin network perturbation with a variety of physical ECM signals, we demonstrate the interconnected nature of the architecture inside the cell and the scaffolding outside of it, and highlight the key elements facilitating cancer cell-ECM interactions.


Assuntos
Movimento Celular , Filamentos Intermediários/metabolismo , Linhagem Celular Tumoral , Dimetilpolisiloxanos/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Queratinas/metabolismo
4.
PLoS One ; 9(7): e103245, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25072702

RESUMO

It is well established that the mechanical environment influences cell functions in health and disease. Here, we address how the mechanical environment influences tumor growth, in particular, the shape of solid tumors. In an in vitro tumor model, which isolates mechanical interactions between cancer tumor cells and a hydrogel, we find that tumors grow as ellipsoids, resembling the same, oft-reported observation of in vivo tumors. Specifically, an oblate ellipsoidal tumor shape robustly occurs when the tumors grow in hydrogels that are stiffer than the tumors, but when they grow in more compliant hydrogels they remain closer to spherical in shape. Using large scale, nonlinear elasticity computations we show that the oblate ellipsoidal shape minimizes the elastic free energy of the tumor-hydrogel system. Having eliminated a number of other candidate explanations, we hypothesize that minimization of the elastic free energy is the reason for predominance of the experimentally observed ellipsoidal shape. This result may hold significance for explaining the shape progression of early solid tumors in vivo and is an important step in understanding the processes underlying solid tumor growth.


Assuntos
Elasticidade , Modelos Teóricos , Neoplasias/patologia , Algoritmos , Linhagem Celular Tumoral , Humanos , Estresse Mecânico , Carga Tumoral
5.
Nat Med ; 19(7): 901-908, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23793099

RESUMO

Here we show that glioblastoma express high levels of branched-chain amino acid transaminase 1 (BCAT1), the enzyme that initiates the catabolism of branched-chain amino acids (BCAAs). Expression of BCAT1 was exclusive to tumors carrying wild-type isocitrate dehydrogenase 1 (IDH1) and IDH2 genes and was highly correlated with methylation patterns in the BCAT1 promoter region. BCAT1 expression was dependent on the concentration of α-ketoglutarate substrate in glioma cell lines and could be suppressed by ectopic overexpression of mutant IDH1 in immortalized human astrocytes, providing a link between IDH1 function and BCAT1 expression. Suppression of BCAT1 in glioma cell lines blocked the excretion of glutamate and led to reduced proliferation and invasiveness in vitro, as well as significant decreases in tumor growth in a glioblastoma xenograft model. These findings suggest a central role for BCAT1 in glioma pathogenesis, making BCAT1 and BCAA metabolism attractive targets for the development of targeted therapeutic approaches to treat patients with glioblastoma.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Glioma/metabolismo , Transaminases/fisiologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Feminino , Glioma/genética , Glioma/patologia , Células HEK293 , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/fisiologia , Metabolismo/genética , Camundongos , Camundongos Nus , Modelos Biológicos , Transaminases/genética , Transaminases/metabolismo
6.
Curr Biol ; 23(4): 271-81, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23375895

RESUMO

BACKGROUND: Cells sense the extracellular environment using adhesion receptors (integrins) linked to the intracellular actin cytoskeleton through a complex network of regulatory proteins that, all together, form focal adhesions (FAs). The molecular basis of how these sensing units are regulated, how they are implicated in transducing mechanical stimuli, and how this leads to a spatiotemporal coordination of FAs is unclear. RESULTS: Here we show that vinculin, through its links to the talin-integrin complex and F-actin, regulates the transmission of mechanical signals from the extracellular matrix to the actomyosin machinery. We demonstrate that the vinculin interaction with the talin-integrin complex drives the recruitment and release of core FA components. The activation state of vinculin is itself regulated by force, as underscored by our observation that vinculin localization to FAs is dependent on actomyosin contraction. Using a variety of vinculin mutants, we establish which components of the cell-matrix adhesion network are coordinated through direct and indirect associations with vinculin. Moreover, using cyclic stretching, we demonstrate that vinculin plays a key role in the transmission of extracellular mechanical stimuli leading to the reorganization of cell polarity. Of particular importance is the actin-binding tail region of vinculin, without which the cell's ability to repolarize in response to cyclic stretching is perturbed. CONCLUSIONS: Overall our data promote a model whereby vinculin controls the transmission of intracellular and extracellular mechanical cues that are important for the spatiotemporal assembly, disassembly, and reorganization of FAs to coordinate polarized cell motility.


Assuntos
Citoesqueleto/metabolismo , Adesões Focais/metabolismo , Vinculina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Adesão Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular , Polaridade Celular , Junções Célula-Matriz/metabolismo , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Melanoma , Camundongos , Mutação , Osteossarcoma , Ligação Proteica , Talina/metabolismo , Vinculina/genética
7.
J Biol Chem ; 287(41): 34604-13, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22893698

RESUMO

The continuous assembly and disassembly of focal adhesions is required for efficient cell spreading and migration. The G-protein-coupled receptor kinase-interacting protein 1 (GIT1) is a multidomain protein whose dynamic localization to sites of cytoskeletal remodeling is critically involved in the regulation of these processes. Here we provide evidence that the subcellular localization of GIT1 is regulated by protein kinase D3 (PKD3) through direct phosphorylation on serine 46. GIT1 phosphorylation on serine 46 was abrograted by PKD3 depletion, thereby identifying GIT1 as the first specific substrate for this kinase. A GIT1 S46D phosphomimetic mutant localized to motile, paxillin-positive cytoplasmic complexes, whereas the phosphorylation-deficient GIT1 S46A was enriched in focal adhesions. We propose that phosphorylation of GIT1 on serine 46 by PKD3 represents a molecular switch by which GIT1 localization, paxillin trafficking, and cellular protrusive activity are regulated.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/fisiologia , Citoesqueleto/metabolismo , Paxilina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Substituição de Aminoácidos , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Citoesqueleto/genética , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Paxilina/genética , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico/fisiologia , Piruvato Desidrogenase Quinase de Transferência de Acetil , Serina/genética , Serina/metabolismo
8.
Acta Neuropathol ; 123(4): 529-38, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22134538

RESUMO

The contribution of microRNAs to the initiation, progression, and metastasis of medulloblastoma (MB) remains poorly understood. Metastatic dissemination at diagnosis is present in about 30% of MB patients, and is associated with a dismal prognosis. Using microRNA expression profiling, we demonstrate that the retinal miR-183-96-182 cluster on chromosome 7q32 is highly overexpressed in non-sonic hedgehog MBs (non-SHH-MBs). Expression of miR-182 and miR-183 is associated with cerebellar midline localization, and miR-182 is significantly overexpressed in metastatic MB as compared to non-metastatic tumors. Overexpression of miR-182 in non-SHH-MB increases and knockdown of miR-182 decreases cell migration in vitro. Xenografts overexpressing miR-182 invaded adjacent normal tissue and spread to the leptomeninges, phenotypically reminiscent of clinically highly aggressive large cell anaplastic MB. Hence, our study provides strong in vitro and in vivo evidence that miR-182 contributes to leptomeningeal metastatic dissemination in non-SHH-MB. We therefore reason that targeted inhibition of miR-182 may prevent leptomeningeal spread in patients with non-SHH-MB.


Assuntos
Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Meduloblastoma/genética , Meduloblastoma/patologia , Neoplasias Meníngeas/secundário , MicroRNAs/genética , Adolescente , Animais , Ensaios de Migração Celular , Proliferação de Células , Criança , Pré-Escolar , Estudos de Coortes , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas Hedgehog/genética , Humanos , Masculino , Neoplasias Meníngeas/genética , Camundongos , Camundongos SCID , Análise em Microsséries , Transplante Heterólogo/métodos , Células Tumorais Cultivadas , Proteínas Wnt/genética , Adulto Jovem
9.
Biomaterials ; 33(8): 2409-18, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22197568

RESUMO

Collective cell migration plays a major role in cancer metastasis and wound healing, therefore, several in vitro assays for studying such behavior have been developed. Using photoswitchable surfaces, we studied collective cell expansion behavior from initially precisely controlled adhesive patterns. A non-adhesive poly(ethylene glycol) (PEG) layer is conjugated to a glass coverslip via 2-nitrobenzyl groups, which cleave upon exposure to UV light, changing the surface from non-cell-adhesive to cell-adhesive without mechanical interference. Initial cell attaching areas are generated in arbitrary shapes via projection exposure through a photomask. After a growth phase, epithelial cell sheets are released from their confinement by a second illumination allowing for collective cell expansion. Our experiments with epithelial cells show that cluster size and boundary curvature modulate the expansion of the cell sheet and the formation of leader cells. At a certain cluster size, characteristics of the expansion behavior change and cells in the core are hardly affected by the boundary release. With donut-like ring structures, we demonstrate a break in symmetry between the behavior of cells along the outer convex boundary and along the inner concave boundary. Additionally, we observe that collective migration characteristics are modulated by the initial incubation time of the cell sheet.


Assuntos
Adesivos/farmacologia , Movimento Celular/efeitos dos fármacos , Células Epiteliais/citologia , Animais , Adesão Celular/efeitos dos fármacos , Adesão Celular/efeitos da radiação , Agregação Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos da radiação , Forma Celular/efeitos dos fármacos , Forma Celular/efeitos da radiação , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/efeitos da radiação , Luz , Propriedades de Superfície/efeitos dos fármacos , Propriedades de Superfície/efeitos da radiação , Fatores de Tempo
10.
PLoS One ; 5(1): e8726, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20090950

RESUMO

Cell migration is a fundamental feature of the interaction of cells with their surrounding. The cell's stiffness and ability to deform itself are two major characteristics that rule migration behavior especially in three-dimensional tissue. We simulate this situation making use of a micro-fabricated migration chip to test the active invasive behavior of pancreatic cancer cells (Panc-1) into narrow channels. At a channel width of 7 microm cell migration through the channels was significantly impeded due to size exclusion. A striking increase in cell invasiveness was observed once the cells were treated with the bioactive lipid sphingosylphosphorylcholine (SPC) that leads to a reorganization of the cell's keratin network, an enhancement of the cell's deformability, and also an increase in the cell's migration speed on flat surfaces. The migration speed of the highly deformed cells inside the channels was three times higher than of cells on flat substrates but was not affected upon SPC treatment. Cells inside the channels migrated predominantly by smooth sliding while maintaining constant cell length. In contrast, cells on adhesion mediating narrow lines moved in a stepwise way, characterized by fluctuations in cell length. Taken together, with our migration chip we demonstrate that the dimensionality of the environment strongly affects the migration phenotype and we suggest that the spatial cytoskeletal keratin organization correlates with the tumor cell's invasive potential.


Assuntos
Invasividade Neoplásica , Metástase Neoplásica , Linhagem Celular Tumoral , Humanos , Queratinas/metabolismo
11.
Nano Lett ; 9(3): 1111-6, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19206508

RESUMO

We herein present a novel platform of well-controlled ordered and disordered nanopatterns positioned with a cyclic peptide of arginine-glycine-aspartic acid (RGD) on a bioinert poly(ethylene glycol) background, to study whether the nanoscopic order of spatial patterning of the integrin-specific ligands influences osteoblast adhesion. This is the first time that the nanoscale order of RGD ligand patterns was varied quantitatively, and tested for its impact on the adhesion of tissue cells. Our findings reveal that integrin clustering and such adhesion induced by RGD ligands is dependent on the local order of ligand arrangement on a substrate when the global average ligand spacing is larger than 70 nm; i.e., cell adhesion is "turned off" by RGD nanopattern order and "turned on" by the RGD nanopattern disorder if operating at this range of interligand spacing.


Assuntos
Nanotecnologia/métodos , Oligopeptídeos/química , Peptídeos/química , Algoritmos , Adesão Celular , Análise por Conglomerados , Ouro/química , Humanos , Integrinas/química , Ligantes , Microscopia de Força Atômica , Microscopia de Fluorescência , Osteoblastos/metabolismo , Polietilenoglicóis/química
12.
Soft Matter ; 3(3): 307-326, 2007 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32900147

RESUMO

Living cells are complex entities whose remarkable, emergent capacity to sense, integrate, and respond to environmental cues relies on an intricate series of interactions among the cell's macromolecular components. Defects in mechanosensing, transduction,or responses underlie many diseases such as cancers, immune disorders, cardiac hypertrophy, genetic malformations, and neuropathies. Here, we highlight micro- and nanotechnology-based tools that have been used to study how chemical and mechanical cues modulate the responses of single cells in contact with the extracellular environment. Understanding the physical aspects of these complex processes at the micro- and nanometer scale could produce profound and fundamental new insights into how the processes of cell migration, metastasis, immune function and other areas which are regulated by mechanical forces.

13.
Chemphyschem ; 5(1): 85-92, 2004 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-14999847

RESUMO

Little is known about how functional regulation failure in genetically altered cells is influenced by topographical confinement of cells, a situation often present in tissues in vivo. We used cultured melanocytes derived from human skin samples as a model system for such investigations. Normal melanocytes have a very well defined shape consisting of a cell body and two dendrites arranged 180 degrees relative to each other. In contrast, neurofibromin 1-melanocytes (NF1-melanocytes) have up to a 50% reduction of neurofibromin 1, which results in an altered morphology that can be easily measured. NF1-melanocytes deviate from the defined structure of normal melanocytes by forming more than two dendrites per cell. We show that morphology consequences of genetically altered melanocytes can be canceled if cells interact with substrates microstructured by stripes that apply mechanophysical signals in the form of physical topography. The strength of the mechanophysical signal was varied systematically by increasing the height of the microstructures. Melanocytes respond to surface topographical features that are larger than 50 nm and have lateral confinements smaller 4 microns. The response of normal and NF1-melanocytes to different topographies was analyzed quantitatively by determining density distributions for the number of dendrites per cell, the angles between dendrites, and the orientation imprinted in the substrate. The synthesis of melanin, a pigment produced by melanocytes, differs in the case of genetically altered NF1- and normal melanocytes. In both cases, the interaction with microstripes enhanced melanin production significantly. This enhanced melanin production is speculated to be caused by the mechanical stabilization of the dendrites by substrate guidance.


Assuntos
Dendritos/fisiologia , Melaninas/biossíntese , Melanócitos/fisiologia , Neurofibromina 1/genética , Tamanho Celular , Células Cultivadas , Meios de Cultura , Dendritos/ultraestrutura , Humanos , Matemática , Melaninas/análise , Melanócitos/citologia , Melanócitos/metabolismo , Microscopia Eletrônica , Neurofibromina 1/química , Pigmentação da Pele
14.
Proc Natl Acad Sci U S A ; 99(21): 13783-8, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12368469

RESUMO

In human diseases related to tumor-suppressor genes, it is suggested that only the complete loss of the protein results in specific symptoms such as tumor formation, whereas simple reduction of protein quantity to 50%, called haploinsufficiency, essentially does not affect cellular behavior. Using a model of gene expression, it was presumed that haploinsufficiency is related to an increased noise in gene expression also in vivo [Cook, D. L., Gerber, A. N. & Tapscott, S. J. (1998) Proc. Natl. Acad. Sci. USA 95, 15641-15646]. Here, we demonstrate that haploinsufficiency of the tumor-suppressor gene neurofibromatosis type 1 (NF1) results in an increased variation of dendrite formation in cultured NF1 melanocytes. These morphological differences between NF1 and control melanocytes can be described by a mathematical model in which the cell is considered to be a self-organized automaton. The model describes the adjustment of the cells to a set point and includes a noise term that allows for stochastic processes. It describes the experimental data of control and NF1 melanocytes. In the cells haploinsufficient for NF1 we found an altered signal-to-noise ratio detectable as increased variation in dendrite formation in two of three investigated morphological parameters. We also suggest that in vivo NF1 haploinsufficiency results in an increased noise in cellular regulation and that this effect of haploinsufficiency may be found also in other tumor suppressors.


Assuntos
Genes da Neurofibromatose 1 , Melanócitos/patologia , Mutação , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Estudos de Casos e Controles , Expressão Gênica , Genótipo , Humanos , Técnicas In Vitro , Matemática , Modelos Biológicos , Modelos Genéticos , Fenótipo , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA