Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Res ; 203: 117506, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34371231

RESUMO

The bacterial growth potential (BGP) of drinking water is widely assessed either by flow cytometric intact cell count (BGPICC) or adenosine triphosphate (BGPATP) based methods. Combining BGPICC and BGPATP measurements has been previously applied for various types of drinking water having high to low growth potential. However, this has not been applied for water with ultra-low nutrient content, such as remineralised RO permeate. To conduct a sound comparison, conventionally treated drinking water was included in this study, which was also used as an inoculum source. BGPICC, BGPATP, intact cell-yield (YICC), and ATP-yield (YATP) were determined for conventionally treated drinking water (Tap-water) and remineralised RO permeate (RO-water). In addition, both BGPICC and BGPATP methods were used to identify the growth-limiting nutrient in each water type. The results showed that the BGPICC ratio between Tap-water/RO-water was ∼7.5, whereas the BGPATP ratio was only ∼4.5. Moreover, the YICC ratio between Tap-water/RO-water was ∼2 (9.8 ± 0.6 × 106 vs. 4.6 ± 0.8 × 106 cells/µg-C), whereas the YATP ratio was ∼1 (0.39 ± 0.12 vs. 0.42 ± 0.06 ng ATP/µg-C), resulting in a consistently higher ATP per cell in RO-water than that of Tap-water. Both BGPICC and BGPATP methods revealed that carbon was the growth-limiting nutrient in the two types of water. However, with the addition of extra carbon, phosphate limitation was detected only with the BGPICC method, whereas BGPATP was not affected, suggesting that a combination of carbon and phosphate is essential for biomass synthesis, whereas carbon is probably utilised for cellular activities other than cell synthesis when phosphate is limited. It was estimated that the intact cell-yield growing on phosphate would be 0.70 ± 0.05 × 109 cells/µg PO4-P.


Assuntos
Água Potável , Purificação da Água , Trifosfato de Adenosina , Contagem de Células , Nutrientes , Osmose
2.
Water Res ; 71: 171-86, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25616114

RESUMO

Biofouling is still a major challenge in the application of nanofiltration and reverse osmosis membranes. Here we present a platform approach for environmentally friendly biofouling control using a combination of a hydrogel-coated feed spacer and two-phase flow cleaning. Neutral (polyHEMA-co-PEG10MA), cationic (polyDMAEMA) and anionic (polySPMA) hydrogels have been successfully grafted onto polypropylene (PP) feed spacers via plasma-mediated UV-polymerization. These coatings maintained their chemical stability after 7 days incubation in neutral (pH 7), acidic (pH 5) and basic (pH 9) environments. Anti-biofouling properties of these coatings were evaluated by Escherichia coli attachment assay and nanofiltration experiments at a TMP of 600 kPag using tap water with additional nutrients as feed and by using optical coherence tomography. Especially the anionic polySPMA-coated PP feed spacer shows reduced attachment of E. coli and biofouling in the spacer-filled narrow channels resulting in delayed biofilm growth. Employing this highly hydrophilic coating during removal of biofouling by two-phase flow cleaning also showed enhanced cleaning efficiency, feed channel pressure drop and flux recoveries. The strong hydrophilic nature and the presence of negative charge on polySPMA are most probably responsible for the improved antifouling behavior. A combination of polySPMA-coated PP feed spacers and two-phase flow cleaning therefore is promising and an environmentally friendly approach to control biofouling in NF/RO systems employing spiral-wound membrane modules.


Assuntos
Incrustação Biológica , Filtração/instrumentação , Membranas Artificiais , Purificação da Água/instrumentação , Biofilmes , Escherichia coli , Filtração/métodos , Hidrogel de Polietilenoglicol-Dimetacrilato , Polipropilenos/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA