Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 65(2): 1396-1417, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34928152

RESUMO

The protein kinase DYRK1A is involved in Alzheimer's disease, Down syndrome, diabetes, viral infections, and leukemia. Leucettines, a family of 2-aminoimidazolin-4-ones derived from the marine sponge alkaloid Leucettamine B, have been developed as pharmacological inhibitors of DYRKs (dual specificity, tyrosine phosphorylation regulated kinases) and CLKs (cdc2-like kinases). We report here on the synthesis and structure-activity relationship (SAR) of 68 Leucettines. Leucettines were tested on 11 purified kinases and in 5 cellular assays: (1) CLK1 pre-mRNA splicing, (2) Threonine-212-Tau phosphorylation, (3) glutamate-induced cell death, (4) autophagy and (5) antagonism of ligand-activated cannabinoid receptor CB1. The Leucettine SAR observed for DYRK1A is essentially identical for CLK1, CLK4, DYRK1B, and DYRK2. DYRK3 and CLK3 are less sensitive to Leucettines. In contrast, the cellular SAR highlights correlations between inhibition of specific kinase targets and some but not all cellular effects. Leucettines deserve further development as potential therapeutics against various diseases on the basis of their molecular targets and cellular effects.


Assuntos
Imidazóis/química , Imidazóis/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Splicing de RNA , Receptor CB1 de Canabinoide/antagonistas & inibidores , Animais , Autofagia , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Fosforilação , Relação Estrutura-Atividade
2.
J Pharmacol Sci ; 145(4): 319-326, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33712283

RESUMO

Cannabinoid receptors are a potential target for anti-inflammatory and pain therapeutics. There are two subtypes, CB1 and CB2, and Δ9-tetrahydrocannabinol activates both of them, providing an analgesic effect but also psychoactive side effects. The psychoactive side effects are considered to be caused by activation of CB1, but not CB2. ABK5 is a CB2 subtype selective agonist that has a very different structure from known cannabinoid receptor agonists. Here, we report anti-inflammatory effects of ABK5 using the T-cell line Jurkat cells, and antinociceptive effect in an inflammatory pain model in rats. Production of the cytokines IL-2 and TNF-α was measured in stimulated Jurkat cells and MOLT-4 cells, and CXCL12-mediated chemotaxis of Jurkat cells was evaluated by a transwell migration assay. Anti-inflammatory and antinociceptive effects of ABK5 were also evaluated in a hindpaw CFA model in rats. ABK5 significantly decreased production of IL-2 and TNF-α measured as both mRNA and protein levels, and reduced chemotaxis towards CXCL12. It also attenuated edema and increased mechanical threshold in the hindpaw of CFA-treated rats. These results suggest that ABK5 is a good lead compound for the development of potential anti-inflammatory and analgesic agents.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Benzoatos/farmacologia , Dor/tratamento farmacológico , Receptor CB2 de Canabinoide/agonistas , Sulfonamidas/farmacologia , Animais , Quimiocina CXCL12 , Quimiotaxia/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-2/metabolismo , Células Jurkat , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
3.
Neuropharmacology ; 124: 3-12, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28527758

RESUMO

Cannabinoid pharmacology has been intensely studied because of cannabis' pervasive medicinal and non-medicinal uses as well as for the therapeutic potential of cannabinoid-based drugs for the treatment of pain, anxiety, substance abuse, obesity, cancer and neurodegenerative disorders. The identification of allosteric modulators of the cannabinoid receptor 1 (CB1) has given a new direction to the development of cannabinoid-based therapeutics due to the many advantages offered by targeting allosteric site(s). Allosteric receptor modulators hold potential to develop subtype-specific and pathway-specific therapeutics. Here we briefly discuss the first-generation of allosteric modulators of CB1 receptor, their structure-activity relationships, signaling pathways and the allosteric binding site(s) on the CB1 receptor. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".


Assuntos
Moduladores de Receptores de Canabinoides/farmacologia , Ligantes , Receptor CB1 de Canabinoide/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Humanos , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
4.
Biochemistry ; 53(19): 3248-60, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24786965

RESUMO

The Sec pathway mediates translocation of protein across the inner membrane of bacteria. SecA is a motor protein that drives translocation of preprotein through the SecYEG channel. SecA reversibly dimerizes under physiological conditions, but different dimer interfaces have been observed in SecA crystal structures. Here, we have used biophysical approaches to address the nature of the SecA dimer that exists in solution. We have taken advantage of the extreme salt sensitivity of SecA dimerization to compare the rates of hydrogen-deuterium exchange of the monomer and dimer and have analyzed the effects of single-alanine substitutions on dimerization affinity. Our results support the antiparallel dimer arrangement observed in one of the crystal structures of Bacillus subtilis SecA. Additional residues lying within the preprotein binding domain and the C-terminus are also protected from exchange upon dimerization, indicating linkage to a conformational transition of the preprotein binding domain from an open to a closed state. In agreement with this interpretation, normal mode analysis demonstrates that the SecA dimer interface influences the global dynamics of SecA such that dimerization stabilizes the closed conformation.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Multimerização Proteica/fisiologia , Adenosina Trifosfatases/genética , Substituição de Aminoácidos , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Estrutura Quaternária de Proteína , Canais de Translocação SEC , Proteínas SecA
5.
J Bacteriol ; 195(20): 4709-15, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23935053

RESUMO

SecA is an ATPase nanomotor critical for bacterial secretory protein translocation. Secretory proteins carry an amino-terminal signal peptide that is recognized and bound by SecA followed by its transfer across the SecYEG translocon. While this process is crucial for the onset of translocation, exactly where the signal peptide interacts with SecA is unclear. SecA protomers also interact among themselves to form dimers in solution, yet the oligomeric interface and the residues involved in dimerization are unknown. To address these issues, we utilized the substituted cysteine accessibility method (SCAM); we generated a library of 23 monocysteine SecA mutants and probed for the accessibility of each mutant cysteine to maleimide-(polyethylene glycol)2-biotin (MPB), a sulfhydryl-labeling reagent, both in the presence and absence of a signal peptide. Dramatic differences in MPB labeling were observed, with a select few mutants located at the preprotein cross-linking domain (PPXD), the helical wing domain (HWD), and the helical scaffold domain (HSD), indicating that the signal peptide binds at the groove formed between these three domains. The exposure of this binding site is varied under different conditions and could therefore provide an ideal mechanism for preprotein transfer into the translocon. We also identified residues G793, A795, K797, and D798 located at the two-helix finger of the HSD to be involved in dimerization. Adenosine-5'-(γ-thio)-triphosphate (ATPγS) alone and, more extensively, in conjunction with lipids and signal peptides strongly favored dimer dissociation, while ADP supports dimerization. This study provides key insight into the structure-function relationships of SecA preprotein binding and dimer dissociation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Mapeamento Cromossômico , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Ligantes , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Canais de Translocação SEC , Proteínas SecA
6.
J Bacteriol ; 195(12): 2817-25, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23585536

RESUMO

The motor protein SecA is a core component of the bacterial general secretory (Sec) pathway and is essential for cell viability. Despite evidence showing that SecA exists in a dynamic monomer-dimer equilibrium favoring the dimeric form in solution and in the cytoplasm, there is considerable debate as to the quaternary structural organization of the SecA dimer. Here, a site-directed photo-cross-linking technique was utilized to identify residues on the Escherichia coli SecA (ecSecA) dimer interface in the cytosol of intact cells. The feasibility of this method was demonstrated with residue Leu6, which is essential for ecSecA dimerization based on our analytical ultracentrifugation studies of SecA L6A and shown to form the cross-linked SecA dimer in vivo with p-benzoyl-phenylalanine (pBpa) substituted at position 6. Subsequently, the amino terminus (residues 2 to 11) in the nucleotide binding domain (NBD), Phe263 in the preprotein binding domain (PBD), and Tyr794 and Arg805 in the intramolecular regulator of the ATPase 1 domain (IRA1) were identified to be involved in ecSecA dimerization. Furthermore, the incorporation of pBpa at position 805 did not form a cross-linked dimer in the SecA Δ2-11 context, indicating the possibility that the amino terminus may directly contact Arg805 or that the deletion of residues 2 to 11 alters the topology of the naturally occurring ecSecA dimer.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Multimerização Proteica , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Canais de Translocação SEC , Proteínas SecA , Ultracentrifugação
7.
J Mol Biol ; 408(1): 87-98, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21315086

RESUMO

Transport of many proteins to extracytoplasmic locations occurs via the general secretion (Sec) pathway. In Escherichia coli, this pathway is composed of the SecYEG protein-conducting channel and the SecA ATPase. SecA plays a central role in binding the signal peptide region of preproteins, directing preproteins to membrane-bound SecYEG and promoting translocation coupled with ATP hydrolysis. Although it is well established that SecA is crucial for preprotein transport and thus cell viability, its oligomeric state during different stages of transport remains ill defined. We have characterized the energetics of SecA dimerization as a function of salt concentration and temperature and defined the linkage of SecA dimerization and signal peptide binding using analytical ultracentrifugation. The use of a new fluorescence detector permitted an analysis of SecA dimerization down to concentrations as low as 50 nM. The dimer dissociation constants are strongly dependent on salt. Linkage analysis indicates that SecA dimerization is coupled to the release of about five ions, demonstrating that electrostatic interactions play an important role in stabilizing the SecA dimer interface. Binding of signal peptide reduces SecA dimerization affinity, such that K(d) increases about 9-fold from 0.28 µM in the absence of peptide to 2.68 µM in the presence of peptide. The weakening of the SecA dimer that accompanies signal peptide binding may poise the SecA dimer to dissociate upon binding to SecYEG.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Dimerização , Escherichia coli/crescimento & desenvolvimento , Sinais Direcionadores de Proteínas , Canais de Translocação SEC , Proteínas SecA
8.
Biochemistry ; 49(4): 782-92, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20025247

RESUMO

Identification of the signal peptide-binding domain within SecA ATPase is an important goal for understanding the molecular basis of SecA preprotein recognition as well as elucidating the chemo-mechanical cycle of this nanomotor during protein translocation. In this study, Forster resonance energy transfer methodology was employed to map the location of the SecA signal peptide-binding domain using a collection of functional monocysteine SecA mutants and alkaline phosphatase signal peptides labeled with appropriate donor-acceptor fluorophores. Fluorescence anisotropy measurements yielded an equilibrium binding constant of 1.4 or 10.7 muM for the alkaline phosphatase signal peptide labeled at residue 22 or 2, respectively, with SecA, and a binding stoichiometry of one signal peptide bound per SecA monomer. Binding affinity measurements performed with a monomer-biased mutant indicate that the signal peptide binds equally well to SecA monomer or dimer. Distance measurements determined for 13 SecA mutants show that the SecA signal peptide-binding domain encompasses a portion of the preprotein cross-linking domain but also includes regions of nucleotide-binding domain 1 and particularly the helical scaffold domain. The identified region lies at a multidomain interface within the heart of SecA, surrounded by and potentially responsive to domains important for binding nucleotide, mature portions of the preprotein, and the SecYEG channel. Our FRET-mapped binding domain, in contrast to the domain identified by NMR spectroscopy, includes the two-helix finger that has been shown to interact with the preprotein during translocation and lies at the entrance to the protein-conducting channel in the recently determined SecA-SecYEG structure.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Canais de Translocação SEC , Proteínas SecA
9.
Biopolymers ; 91(7): 565-73, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19274719

RESUMO

Recent research has implicated the C-terminus of G-protein coupled receptors in key events such as receptor activation and subsequent intracellular sorting, yet obtaining structural information of the entire C-tail has proven a formidable task. Here, a peptide corresponding to the full-length C-tail of the human CB1 receptor (residues 400-472) was expressed in E.coli and purified in a soluble form. Circular dichroism (CD) spectroscopy revealed that the peptide adopts an alpha-helical conformation in negatively charged and zwitterionic detergents (48-51% and 36-38%, respectively), whereas it exhibited the CD signature of unordered structure at low concentration in aqueous solution. Interestingly, 27% helicity was displayed at high peptide concentration suggesting that self-association induces helix formation in the absence of a membrane mimetic. NMR spectroscopy of the doubly labeled ((15)N- and (13)C-) C-terminus in dodecylphosphocholine (DPC) identified two amphipathic alpha-helical domains. The first domain, S401-F412, corresponds to the helix 8 common to G protein-coupled receptors while the second domain, A440-M461, is a newly identified structural motif in the distal region of the carboxyl-terminus of the receptor. Molecular modeling of the C-tail in DPC indicates that both helices lie parallel to the plane of the membrane with their hydrophobic and hydrophilic faces poised for critical interactions.


Assuntos
Receptores de Canabinoides/química , Sequência de Aminoácidos , Dicroísmo Circular , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Estrutura Secundária de Proteína , Receptores de Canabinoides/isolamento & purificação , Receptores de Canabinoides/metabolismo
10.
Biochemistry ; 46(34): 9665-73, 2007 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-17676771

RESUMO

Understanding the transport of hydrophilic proteins across biological membranes continues to be an important undertaking. The general secretory (Sec) pathway in Escherichia coli transports the majority of E. coli proteins from their point of synthesis in the cytoplasm to their sites of final localization, associating sequentially with a number of protein components of the transport machinery. The targeting signals for these substrates must be discriminated from those of proteins transported via other pathways. While targeting signals for each route have common overall characteristics, individual signal peptides vary greatly in their amino acid sequences. How do these diverse signals interact specifically with the proteins that comprise the appropriate transport machinery and, at the same time, avoid targeting to an alternate route? The recent publication of the crystal structures of components of the Sec transport machinery now allows a more thorough consideration of the interactions of signal sequences with these components.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA , Partícula de Reconhecimento de Sinal/genética , Transdução de Sinais/genética
11.
12.
J Mol Biol ; 365(3): 637-48, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17084862

RESUMO

SecA, an ATPase crucial to the Sec-dependent translocation machinery in Escherichia coli, recognizes and directly binds the N-terminal signal peptide of an exported preprotein. This interaction plays a central role in the targeting and transport of preproteins via the SecYEG channel. Here we identify the signal peptide binding groove (SPBG) on SecA addressing a key issue regarding the SecA-preprotein interaction. We employ a synthetic signal peptide containing the photoreactive benzoylphenylalanine to efficiently and specifically label SecA containing a unique Factor Xa site. Comparison of the photolabeled fragment from the subsequent proteolysis of several SecAs, which vary only in the location of the Factor Xa site, reveals one 53 residue segment in common with the entire series. The covalently modified SecA segment produced is the same in aqueous solution and in lipid vesicles. This spans amino acid residues 269 to 322 of the E. coli protein, which is distinct from a previously proposed signal peptide binding site, and contributes to a hydrophobic peptide binding groove evident in molecular models of SecA.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Marcadores de Fotoafinidade/metabolismo , Sinais Direcionadores de Proteínas , Fosfatase Alcalina/química , Fosfatase Alcalina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Biotina/química , Biotina/metabolismo , Fator Xa/química , Fator Xa/metabolismo , Metabolismo dos Lipídeos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fenilalanina/análogos & derivados , Fenilalanina/metabolismo , Ligação Proteica , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Canais de Translocação SEC , Proteínas SecA
13.
Biochim Biophys Acta ; 1768(1): 5-12, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17011510

RESUMO

Many proteins synthesized in the cytoplasm ultimately function in non-cytoplasmic locations. In Escherichia coli, the general secretory (Sec) pathway transports the vast majority of these proteins. Two fundamental components of the Sec transport pathway are the SecYEG heterotrimeric complex that forms the channel through the cytoplasmic membrane, and SecA, the ATPase that drives the preprotein to and across the membrane. This review focuses on what is known about the oligomeric states of these core Sec components and how the oligomeric state might change during the course of the translocation of a preprotein.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas Motores Moleculares/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Dimerização , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Proteínas Motores Moleculares/metabolismo , Conformação Proteica , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA
14.
Brain Res ; 1108(1): 1-11, 2006 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16879811

RESUMO

Activation of a G-protein-coupled receptor involves changes in specific microdomain interactions within the transmembrane region of the receptor. Here, we have focused on the role of L207, proximal to the DRY motif of the human cannabinoid receptor 1 in the interconversion of the receptor resting and active states. Ligand binding analysis of the mutant receptor L207A revealed an enhanced affinity for agonists (three- to six-fold) and a diminished affinity for inverse agonists (19- to 35-fold) compared to the wild-type receptor, properties characteristic of constitutive activity. To further examine whether this mutant adopts a ligand-independent, active form, treatment with GTPgammaS was used to inhibit G protein coupling. Under these conditions, the L207A receptor exhibited a 10-fold increase in affinity for the inverse agonist SR141716A, consistent with a shift away from an enhanced precoupled state. Analysis of the cellular activity of the L207A receptor showed elevated basal cyclic AMP accumulation relative to the wild type that is inhibited by SR141716A, consistent with receptor-mediated Gs precoupling. Using toxins to selectively abrogate Gs or Gi coupling, we found that CP55940 nonetheless induced only a Gi response suggesting a strong preference of this ligand-bound form for Gi in this system. Molecular dynamics simulations reveal that the single residue change of L207A impacts the association of TM3 and TM6 in the receptor by altering hydrophobic interactions involving L207, the salt bridge involving the Arg of the DRY motif, and the helical structure of TM6, consistent with events leading to activation. The structural alterations parallel those observed in models of a mutant CB(1) receptor T210I, with established constitutive activity (D'Antona, A.M., Ahn, K.H. and Kendall, D.A., 2006. Mutations of CB1 T210 produce active and inactive receptor forms: correlations with ligand affinity, receptor stability, and cellular localization. Biochemistry, 45, 5606-5617).


Assuntos
Mutação/genética , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/genética , Motivos de Aminoácidos/efeitos dos fármacos , Motivos de Aminoácidos/genética , Sequência de Aminoácidos/fisiologia , Aminoácidos/química , Ligação Competitiva/efeitos dos fármacos , Ligação Competitiva/genética , Canabinoides/metabolismo , Canabinoides/farmacologia , Linhagem Celular , AMP Cíclico/metabolismo , Cicloexanos/farmacologia , Cicloexanóis , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Humanos , Ligantes , Estrutura Molecular , Fenóis/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Ensaio Radioligante , Receptor CB1 de Canabinoide/efeitos dos fármacos , Rimonabanto
15.
Biochemistry ; 45(17): 5606-17, 2006 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-16634642

RESUMO

Human cannabinoid receptor 1 (CB(1)) has attracted substantial interest as a potential therapeutic target for treating obesity and other obsessive disorders. An understanding of the mechanism governing the transition of the CB(1) receptor between its inactive and active states is critical for understanding how therapeutics can selectively regulate receptor activity. We have examined the importance of the Thr at position 210 in CB(1) in this transition, a residue predicted to be on the same face of the helix as the Arg of the DRY motif highly conserved in the G protein-coupled receptor superfamily. This Thr was substituted with Ile and Ala via mutagenesis, and the receptors, T210I and T210A, were expressed in HEK 293 cells. The T210I receptor exhibited enhanced agonist and diminished inverse agonist affinity relative to the wild type, consistent with a shift toward the active form. However, treatment with GTPgammaS to inhibit G protein coupling diminished the affinity change for the inverse agonist SR141716A. The decreased thermal stability of the T210I receptor and increased level of internalization of a T210I receptor-GFP chimera were also observed, consistent with constitutive activity. In contrast, the T210A receptor exhibited the opposite profile: diminished agonist and enhanced inverse agonist affinity. The T210A receptor was found to be more thermally stable than the wild type, and high levels of a T210A receptor-GFP chimera were localized to the cell surface as predicted for an inactive receptor form. These results suggest that T210 plays a key role in governing the transition between inactive and active CB(1) receptor states.


Assuntos
Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/fisiologia , Treonina/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Ácidos Araquidônicos/metabolismo , Benzoxazinas , Células Cultivadas , AMP Cíclico/metabolismo , Dronabinol/análogos & derivados , Dronabinol/metabolismo , Estabilidade de Medicamentos , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Temperatura Alta , Humanos , Rim/citologia , Ligantes , Morfolinas/metabolismo , Mutação , Naftalenos/metabolismo , Piperidinas/metabolismo , Pirazóis/metabolismo , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Rimonabanto
16.
Biochemistry ; 44(42): 13987-96, 2005 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-16229488

RESUMO

SecA, the peripheral subunit of the Escherichia coli preprotein translocase, interacts with a number of ligands during export, including signal peptides, membrane phospholipids, and nucleotides. Using fluorescence resonance energy transfer (FRET), we studied the interactions of wild-type (WT) and mutant SecAs with IAEDANS-labeled signal peptide, and how these interactions are modified in the presence of other transport ligands. We find that residues on the third alpha-helix in the preprotein cross-linking domain (PPXD) are important for the interaction of SecA and signal peptide. For SecA in aqueous solution, saturation binding data using FRET analysis fit a single-site binding model and yielded a Kd of 2.4 microM. FRET is inhibited for SecA in lipid vesicles relative to that in aqueous solution at a low signal peptide concentration. The sigmoidal nature of the binding curve suggests that SecA in lipids has two conformational states; our results do not support different oligomeric states of SecA. Using native gel electrophoresis, we establish signal peptide-induced SecA monomerization in both aqueous solution and lipid vesicles. Whereas the affinity of SecA for signal peptide in an aqueous environment is unaffected by temperature or the presence of nucleotides, in lipids the affinity decreases in the presence of ADP or AMP-PCP but increases at higher temperature. The latter finding is consistent with SecA existing in an elongated form while inserting the signal peptide into membranes.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Proteínas de Membrana Transportadoras/química , Sinais Direcionadores de Proteínas , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Transferência Ressonante de Energia de Fluorescência , Temperatura Alta , Sondas Moleculares , Canais de Translocação SEC , Proteínas SecA , Espectrometria de Fluorescência
17.
Biochemistry ; 43(41): 13185-92, 2004 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-15476412

RESUMO

Protein translocation in Escherichia coli is initiated by the interaction of a preprotein with the membrane translocase composed of a motor protein, SecA ATPase, and a membrane-embedded channel, the SecYEG complex. The extent to which the signal peptide region of the preprotein plays a role in SecYEG interactions is unclear, in part because studies in this area typically employ the entire preprotein. Using a synthetic signal peptide harboring a photoaffinity label in its hydrophobic core, we examined this interaction with SecYEG in a detergent micellar environment. The signal peptide was found to specifically bind SecY in a saturable manner and at levels comparable to those that stimulate SecA ATPase activity. Chemical and proteolytic cleavage of cross-linked SecY and analysis of the signal peptide adducts indicate that the binding was primarily to regions of the protein containing transmembrane domains seven and two. The signal peptide-SecY interaction was affected by the presence of SecA and nucleotides in a manner consistent with the transfer of signal peptide to SecY upon nucleotide hydrolysis at SecA.


Assuntos
Proteínas de Escherichia coli/metabolismo , Fenilalanina/análogos & derivados , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Biotina/metabolismo , Reagentes de Ligações Cruzadas , Proteínas de Escherichia coli/química , Hidrólise , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fenilalanina/metabolismo , Marcadores de Fotoafinidade/metabolismo , Ligação Proteica , Precursores de Proteínas/química , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA , Raios Ultravioleta
18.
J Mol Biol ; 332(1): 23-30, 2003 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-12946344

RESUMO

In Escherichia coli, SecA is a large, multifunctional protein that is a vital component of the general protein secretion pathway. In its membrane-bound form it functions as the motor component of the protein translocase, perhaps through successive rounds of membrane insertion and ATP hydrolysis. To understand both the energy conversion process and translocase assembly, we have used contrast-matched, small-angle neutron-scattering (SANS) experiments to examine SecA in small unilamellar vesicles of E.coli phospholipids. In the absence of nucleotide, we observe a dimeric form of SecA with a radius of gyration comparable to that previously observed for SecA in solution. In contrast, the presence of either ADP or a non-hydrolyzable ATP analog induces conversion to a monomeric form. The larger radius of gyration for the ATP-bound relative to the ADP-bound form suggests the former has a more expanded global conformation. This is the first direct structural determination of SecA in a lipid bilayer. The SANS data indicate that nucleotide turnover can function as a switch of conformation of SecA in the membrane in a manner consistent with its proposed role in successive cycles of deep membrane penetration and release with concommitant preprotein insertion.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Fosfolipídeos/química , Dimerização , Lipossomos/química , Lipossomos/metabolismo , Modelos Moleculares , Difração de Nêutrons , Fosfolipídeos/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Canais de Translocação SEC , Proteínas SecA
19.
Arch Microbiol ; 178(4): 306-10, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12209265

RESUMO

In Escherichia coli, exported proteins are synthesized as precursors containing an amino-terminal signal peptide which directs transport through the translocase to the proper destination. We have constructed a series of signal peptide mutants, incorporating linker sequences of varying lengths between the amino-terminal charge and core region hydrophobicity, to examine the requirement for the juxtaposition of these two structural features in promoting protein transport. In vivo and in vitro analyses indicated that high transport efficiency via signal peptides with core regions of marginal hydrophobicity absolutely requires the proximity of sufficient charge.


Assuntos
Fosfatase Alcalina/metabolismo , Proteínas de Bactérias , Escherichia coli/química , Escherichia coli/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Mutação , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/genética , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA
20.
Biochemistry ; 41(17): 5573-80, 2002 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-11969418

RESUMO

SecA performs a critical function in the recognition, targeting, and transport of secretory proteins across the cytoplasmic membrane of Escherichia coli. In this study we investigate the substrate specificity of SecA, including the influence of the early mature region of the preprotein on SecA interactions, and the extent to which SecA recognizes targeting signals from different transport pathways. A series of fusion proteins were generated which involved the tandem expression of GST, signal peptide, and the first 30 residues from alkaline phosphatase. These were purified and evaluated for their ability to promote SecA ATPase activity. No significant difference in the stimulation of SecA-lipid ATPase activity between the synthetic wild-type alkaline phosphatase signal peptide and a fusion that also contains the first 30 residues of alkaline phosphatase was observed. The incorporation of sequence motifs in the mature region, which confer SecB dependence in vivo, had no impact on SecA activation in vitro. These results suggest that the early mature region of alkaline phosphatase does not affect the interactions between SecA and the signal peptide. Sec, Tat, and YidC signal peptide fusions were also assayed for their ability to stimulate SecA ATPase activity in vitro and further analyzed in vivo for the Sec dependence of the transport of the corresponding signal peptide mutants of alkaline phosphatase. Our results demonstrate that E. coli Sec signals give the highest level of SecA activation; however, SecA-signal peptide interactions in vitro are not the only arbiter of whether the preprotein utilizes the Sec pathway in vivo.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias , Proteínas do Capsídeo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sinais Direcionadores de Proteínas , Adenosina Trifosfatases/genética , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Transporte Biológico/genética , Capsídeo/genética , Capsídeo/metabolismo , Proteínas de Escherichia coli/genética , Glutationa Transferase/genética , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/genética , Proteolipídeos/metabolismo , Proteínas Recombinantes de Fusão/síntese química , Proteínas Recombinantes de Fusão/metabolismo , Canais de Translocação SEC , Proteínas SecA , Transdução de Sinais/genética , Especificidade por Substrato/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA