Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(11)2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39115447

RESUMO

Nuclear migration is critical for the proper positioning of neurons in the developing brain. It is known that bidirectional microtubule motors are required for nuclear transport, yet the mechanism of the coordination of opposing motors is still under debate. Using mouse cerebellar granule cells, we demonstrate that Nesprin-2 serves as a nucleus-motor adaptor, coordinating the interplay of kinesin-1 and dynein. Nesprin-2 recruits dynein-dynactin-BicD2 independently of the nearby kinesin-binding LEWD motif. Both motor binding sites are required to rescue nuclear migration defects caused by the loss of function of Nesprin-2. In an intracellular cargo transport assay, the Nesprin-2 fragment encompassing the motor binding sites generates persistent movements toward both microtubule minus and plus ends. Nesprin-2 drives bidirectional cargo movements over a prolonged period along perinuclear microtubules, which advance during the migration of neurons. We propose that Nesprin-2 keeps the nucleus mobile by coordinating opposing motors, enabling continuous nuclear transport along advancing microtubules in migrating cells.


Assuntos
Núcleo Celular , Dineínas , Cinesinas , Proteínas Associadas aos Microtúbulos , Microtúbulos , Proteínas do Tecido Nervoso , Neurônios , Animais , Microtúbulos/metabolismo , Neurônios/metabolismo , Cinesinas/metabolismo , Cinesinas/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Dineínas/metabolismo , Núcleo Celular/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Transporte Ativo do Núcleo Celular , Complexo Dinactina/metabolismo , Complexo Dinactina/genética , Movimento Celular , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Cerebelo/metabolismo , Cerebelo/citologia , Sítios de Ligação , Humanos
2.
J Biol Chem ; 296: 100166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33478937

RESUMO

ATP-binding cassette subfamily A member 13 (ABCA13) is predicted to be the largest ABC protein, consisting of 5058 amino acids and a long N-terminal region. Mutations in the ABCA13 gene were reported to increase the susceptibility to schizophrenia, bipolar disorder, and major depression. However, little is known about the molecular functions of ABCA13 or how they associate with psychiatric disorders. Here, we examined the biochemical activity of ABCA13 using HEK293 cells transfected with mouse ABCA13. The expression of ABCA13 induced the internalization of cholesterol and gangliosides from the plasma membrane to intracellular vesicles. Cholesterol internalization by ABCA13 required the long N-terminal region and ATP hydrolysis. To examine the physiological roles of ABCA13, we generated Abca13 KO mice using CRISPR/Cas and found that these mice exhibited deficits of prepulse inhibition. Vesicular cholesterol accumulation and synaptic vesicle endocytosis were impaired in primary cultures of Abca13 KO cortical neurons. Furthermore, mutations in ABCA13 gene associated with psychiatric disorders disrupted the protein's subcellular localization and impaired cholesterol trafficking. These findings suggest that ABCA13 accelerates cholesterol internalization by endocytic retrograde transport in neurons and that loss of this function is associated with the pathophysiology of psychiatric disorders.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Colesterol/metabolismo , Endocitose/genética , Neurônios/metabolismo , Inibição Pré-Pulso , Transportadores de Cassetes de Ligação de ATP/deficiência , Trifosfato de Adenosina/metabolismo , Animais , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Transtorno Bipolar/patologia , Membrana Celular/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/patologia , Modelos Animais de Doenças , Gangliosídeos/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Hidrólise , Camundongos , Camundongos Knockout , Mutação , Neurônios/patologia , Cultura Primária de Células , Transporte Proteico , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patologia , Transgenes
3.
Cancer Discov ; 10(6): 836-853, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32249213

RESUMO

STAG2 encodes a cohesin component and is frequently mutated in myeloid neoplasms, showing highly significant comutation patterns with other drivers, including RUNX1. However, the molecular basis of cohesin-mutated leukemogenesis remains poorly understood. Here we show a critical role of an interplay between STAG2 and RUNX1 in the regulation of enhancer-promoter looping and transcription in hematopoiesis. Combined loss of STAG2 and RUNX1, which colocalize at enhancer-rich, CTCF-deficient sites, synergistically attenuates enhancer-promoter loops, particularly at sites enriched for RNA polymerase II and Mediator, and deregulates gene expression, leading to myeloid-skewed expansion of hematopoietic stem/progenitor cells (HSPC) and myelodysplastic syndromes (MDS) in mice. Attenuated enhancer-promoter loops in STAG2/RUNX1-deficient cells are associated with downregulation of genes with high basal transcriptional pausing, which are important for regulation of HSPCs. Downregulation of high-pausing genes is also confirmed in STAG2-cohesin-mutated primary leukemia samples. Our results highlight a unique STAG2-RUNX1 interplay in gene regulation and provide insights into cohesin-mutated leukemogenesis. SIGNIFICANCE: We demonstrate a critical role of an interplay between STAG2 and a master transcription factor of hematopoiesis, RUNX1, in MDS development, and further reveal their contribution to regulation of high-order chromatin structures, particularly enhancer-promoter looping, and the link between transcriptional pausing and selective gene dysregulation caused by cohesin deficiency.This article is highlighted in the In This Issue feature, p. 747.


Assuntos
Proteínas de Ciclo Celular/deficiência , Cromatina/genética , Proteínas Cromossômicas não Histona/deficiência , Subunidade alfa 2 de Fator de Ligação ao Core/deficiência , Síndromes Mielodisplásicas/etiologia , Animais , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Coesinas
4.
Proc Jpn Acad Ser B Phys Biol Sci ; 94(9): 337-349, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416174

RESUMO

Cell migration is a complex molecular event that requires translocation of a large, stiff nucleus, oftentimes through interstitial pores of submicron size in tissues. Remarkable progress in the past decade has uncovered an ever-increasing array of diverse nuclear dynamics and underlying cytoskeletal control in various cell models. In many cases, the microtubule motors dynein and kinesin directly interact with the nucleus via the LINC complex and steer directional nuclear movement, while actomyosin contractility and its global flow exert forces to deform and move the nucleus. In this review, I focus on the synergistic interplay of the cytoskeletal motors and spatiotemporal sites of force transmission in various nuclear migration models, with a special focus on neuronal migration in the vertebrate brain.


Assuntos
Movimento Celular/fisiologia , Núcleo Celular/fisiologia , Citoesqueleto/fisiologia , Neurônios/metabolismo , Actomiosina/fisiologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Adesão Celular/fisiologia , Linhagem Celular , Dineínas/metabolismo , Humanos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Transdução de Sinais
5.
Cell Rep ; 24(1): 95-106.e9, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29972794

RESUMO

Dendritic filopodia of developing neurons function as environmental sensors, regulating the spatial organization of dendrites and proper targeting to presynaptic partners. Dendritic filopodia morphology is determined by the balance of F-actin assembled via two major nucleating pathways, the ARP2/3 complex and formins. The inverse-BAR protein MTSS1 is highly expressed in Purkinje cells (PCs) and has been shown to upregulate ARP2/3 activity. PCs in MTSS1 conditional knockout mice showed dendrite hypoplasia due to excessive contact-induced retraction during development. This phenotype was concomitant with elongated dendritic filopodia and was phenocopied by overactivation of the actin nucleator formin DAAM1 localized in the tips of PC dendritic protrusions. Cell biology assays including single-molecule speckle microscopy demonstrated that MTSS1's C terminus binds to DAAM1 and paused DAAM1-mediated F-actin polymerization. Thus, MTSS1 plays a dual role as a formin inhibitor and ARP2/3 activator in dendritic filopodia, determining final neuronal morphology.


Assuntos
Dendritos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Pseudópodes/metabolismo , Células de Purkinje/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Espinhas Dendríticas/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/deficiência , Células NIH 3T3 , Proteínas de Neoplasias/deficiência , Ligação Proteica
6.
Mol Cell Neurosci ; 71: 56-65, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26689905

RESUMO

Mitochondria dynamically change their shape by repeated fission and fusion in response to physiological and pathological conditions. Recent studies have uncovered significant roles of mitochondrial fission and fusion in neuronal functions, such as neurotransmission and spine formation. However, the contribution of mitochondrial fission to the development of dendrites remains controversial. We analyzed the function of the mitochondrial fission GTPase Drp1 in dendritic arborization in cerebellar Purkinje cells. Overexpression of a dominant-negative mutant of Drp1 in postmitotic Purkinje cells enlarged and clustered mitochondria, which failed to exit from the soma into the dendrites. The emerging dendrites lacking mitochondrial transport remained short and unstable in culture and in vivo. The dominant-negative Drp1 affected neither the basal respiratory function of mitochondria nor the survival of Purkinje cells. Enhanced ATP supply by creatine treatment, but not reduced ROS production by antioxidant treatment, restored the hypomorphic dendrites caused by inhibition of Drp1 function. Collectively, our results suggest that Drp1 is required for dendritic distribution of mitochondria and thereby regulates energy supply in growing dendritic branches in developing Purkinje cells.


Assuntos
Dinaminas/metabolismo , Mitocôndrias/metabolismo , Neurogênese , Células de Purkinje/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Dendritos/metabolismo , Dinaminas/genética , Camundongos , Camundongos Endogâmicos ICR , Células de Purkinje/citologia , Espécies Reativas de Oxigênio/metabolismo
7.
Nucleic Acids Res ; 43(19): e126, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26101260

RESUMO

Elucidating the dynamic organization of nuclear RNA foci is important for understanding and manipulating these functional sites of gene expression in both physiological and pathological states. However, such studies have been difficult to establish in vivo as a result of the absence of suitable RNA imaging methods. Here, we describe a high-resolution fluorescence RNA imaging method, ECHO-liveFISH, to label endogenous nuclear RNA in living mice and chicks. Upon in vivo electroporation, exciton-controlled sequence-specific oligonucleotide probes revealed focally concentrated endogenous 28S rRNA and U3 snoRNA at nucleoli and poly(A) RNA at nuclear speckles. Time-lapse imaging reveals steady-state stability of these RNA foci and dynamic dissipation of 28S rRNA concentrations upon polymerase I inhibition in native brain tissue. Confirming the validity of this technique in a physiological context, the in vivo RNA labeling did not interfere with the function of target RNA nor cause noticeable cytotoxicity or perturbation of cellular behavior.


Assuntos
Hibridização in Situ Fluorescente/métodos , RNA/análise , Animais , Movimento Celular , Núcleo Celular/genética , Cerebelo/química , Cerebelo/citologia , Embrião de Galinha , Células HeLa , Humanos , Células MCF-7 , Camundongos Endogâmicos ICR , Sondas de Oligonucleotídeos/síntese química , Sondas de Oligonucleotídeos/química , Imagem Óptica , RNA/metabolismo , RNA Ribossômico 28S/análise , RNA Nucleolar Pequeno/análise , Imagem com Lapso de Tempo
8.
J Neurosci ; 35(14): 5707-23, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25855183

RESUMO

The distribution of mitochondria within mature, differentiated neurons is clearly adapted to their regional physiological needs and can be perturbed under various pathological conditions, but the function of mitochondria in developing neurons has been less well studied. We have studied mitochondrial distribution within developing mouse cerebellar Purkinje cells and have found that active delivery of mitochondria into their dendrites is a prerequisite for proper dendritic outgrowth. Even when mitochondria in the Purkinje cell bodies are functioning normally, interrupting the transport of mitochondria into their dendrites severely disturbs dendritic growth. Additionally, we find that the growth of atrophic dendrites lacking mitochondria can be rescued by activating ATP-phosphocreatine exchange mediated by creatine kinase (CK). Conversely, inhibiting cytosolic CKs decreases dendritic ATP levels and also disrupts dendrite development. Mechanistically, this energy depletion appears to perturb normal actin dynamics and enhance the aggregation of cofilin within growing dendrites, reminiscent of what occurs in neurons overexpressing the dephosphorylated form of cofilin. These results suggest that local ATP synthesis by dendritic mitochondria and ATP-phosphocreatine exchange act synergistically to sustain the cytoskeletal dynamics necessary for dendritic development.


Assuntos
Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Creatina Quinase/metabolismo , Dendritos/ultraestrutura , Mitocôndrias/metabolismo , Neurônios/citologia , Actinas/genética , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Cerebelo/citologia , Quelantes/farmacologia , Creatina Quinase/genética , Dendritos/metabolismo , Desoxiglucose/farmacologia , Dependovirus/genética , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Feminino , Hipocampo/citologia , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Potencial da Membrana Mitocondrial/genética , Camundongos , Camundongos Endogâmicos ICR , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Gravidez
9.
Dev Dyn ; 244(6): 748-58, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25820187

RESUMO

BACKGROUND: Neurons in the central nervous system (CNS) are generated by symmetric and asymmetric cell division of neural stem cells and their derivative progenitor cells. Cerebellar granule cells are the most abundant neurons in the CNS, and are generated by intensive cell division of granule cell precursors (GCPs) during postnatal development. Dysregulation of GCP cell cycle is causal for some subtypes of medulloblastoma. However, the details and mechanisms underlying neurogenesis from GCPs are not well understood. RESULTS: Using long-term live-cell imaging of proliferating GCPs transfected with a fluorescent newborn-granule cell marker, we found that GCPs underwent predominantly symmetric divisions, generating two GCPs or two neurons, while asymmetric divisions generating a GCP and a neuron were only occasionally observed, in both dissociated culture and within tissues of isolated cerebellar lobules. We found no significant difference in cell cycle length between proliferative and neurogenic divisions, or any consistent changes in cell cycle length during repeated proliferative division. CONCLUSIONS: Unlike neural stem cells in the cerebral cortex and spinal cord, which generate many neurons by repeated asymmetric division, cerebellar GCPs produce neurons predominantly by terminal symmetric division. These results indicate diverse mechanisms of neurogenesis in the mammalian brain.


Assuntos
Cerebelo/citologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Neurônios/citologia , Animais , Divisão Celular Assimétrica , Biomarcadores , Ciclo Celular , Divisão Celular , Células Cultivadas , Meios de Cultivo Condicionados , Inibidor de Quinase Dependente de Ciclina p27/biossíntese , Inibidor de Quinase Dependente de Ciclina p27/genética , Proteínas do Domínio Duplacortina , Corantes Fluorescentes/análise , Genes Reporter , Células HEK293 , Proteínas Hedgehog/fisiologia , Humanos , Camundongos Endogâmicos ICR , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/biossíntese , Neuropeptídeos/genética , Transdução de Sinais , Imagem com Lapso de Tempo
10.
Genes Cells ; 19(4): 338-49, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24475924

RESUMO

Caprice [C19orf21 actin-bundling protein in characteristic epithelial cells, also called mitotic interactor and substrate of Plk1 (MISP)] is a novel actin-related protein identified in the highly-insoluble subcellular scaffold proteins. This protein contains multiple actin-binding sites, forms characteristic mesh-like F-actin bundles in vitro, and exhibits capricious localization and expression patterns in vivo. Overexpression or knock-down of Caprice resulted in a dramatic effect on cellular morphology by inducing stress fiber-like thick filaments or filopodial formations, respectively. Caprice is expressed and localized in distinct cells and tissues with specialized actin-based structures, such as growth cones of migrating neurons and stereocilia of inner ear hair cells. However, Caprice gene expression is varied among different cell types; especially enriched in several epithelial cells whereas relatively suppressed in a subset of epithelial cells, fibroblasts, and neuroblastoma cells at the transcriptional level. Thus, this protein is expected to be an effector for cell type-specific actin reorganization with its direct actin-binding properties and provides a novel model of cell morphology regulation by a non-ubiquitous single actin-bundling protein.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cães , Humanos , Camundongos , Proteínas dos Microfilamentos/genética , Fosfoproteínas/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Pseudópodes/metabolismo
11.
Mol Cell Neurosci ; 45(4): 335-44, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20654717

RESUMO

The sonic hedgehog (Shh) pathway has essential roles in several processes during development of the vertebrate central nervous system (CNS). Here, we report that Shh regulates dendritic spine formation in hippocampal pyramidal neurons via a novel pathway that directly regulates the actin cytoskeleton. Shh signaling molecules Patched (Ptc) and Smoothened (Smo) are expressed in several types of postmitotic neurons, including cerebellar Purkinje cells and hippocampal pyramidal neurons. Knockdown of Smo induces dendritic spine formation in cultured hippocampal neurons independently of Gli-mediated transcriptional activity. Smo interacts with Tiam1, a guanine nucleotide exchange factor for Rac1, via its cytoplasmic C-terminal region. Inhibition of Tiam1 or Rac1 activity suppresses spine induction by Smo knockdown. Shh induces remodeling of the actin cytoskeleton independently of transcriptional activation in mouse embryonic fibroblasts. These findings demonstrate a novel Shh pathway that regulates the actin cytoskeleton via Tiam1-Rac1 activation.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Hedgehog/metabolismo , Neurogênese/fisiologia , Coluna Vertebral/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Interferência de RNA , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Receptor Smoothened , Coluna Vertebral/citologia , Coluna Vertebral/embriologia , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T
12.
Nat Med ; 15(10): 1202-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19734909

RESUMO

Lissencephaly is a devastating neurological disorder caused by defective neuronal migration. LIS1 (official symbol PAFAH1B1, for platelet-activating factor acetylhydrolase, isoform 1b, subunit 1) was identified as the gene mutated in individuals with lissencephaly, and it was found to regulate cytoplasmic dynein function and localization. Here we show that inhibition or knockdown of calpains protects LIS1 from proteolysis, resulting in the augmentation of LIS1 amounts in Lis1(+/-) mouse embryonic fibroblast cells and rescue of the aberrant distribution of cytoplasmic dynein, mitochondria and beta-COP-positive vesicles. We also show that calpain inhibitors improve neuronal migration of Lis1(+/-) cerebellar granular neurons. Intraperitoneal injection of the calpain inhibitor ALLN to pregnant Lis1(+/-) dams rescued apoptotic neuronal cell death and neuronal migration defects in Lis1(+/-) offspring. Furthermore, in utero knockdown of calpain by short hairpin RNA rescued defective cortical layering in Lis1(+/-) mice. Thus, calpain inhibition is a potential therapeutic intervention for lissencephaly.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Calpaína/antagonistas & inibidores , Regulação da Expressão Gênica no Desenvolvimento , Lisencefalia , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Neurológicos , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Animais , Calpaína/genética , Movimento Celular/genética , Movimento Celular/fisiologia , Células Cultivadas , Córtex Cerebral/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Modelos Animais de Doenças , Dineínas/genética , Dineínas/metabolismo , Embrião de Mamíferos/metabolismo , Feminino , Fibroblastos/metabolismo , Leucina/análogos & derivados , Leucina/farmacologia , Leupeptinas/farmacologia , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Fenótipo , Gravidez
13.
Mol Cell Biol ; 28(14): 4494-506, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18474614

RESUMO

Protein tyrosine phosphatase zeta (PTPzeta) is a receptor type protein tyrosine phosphatase that uses pleiotrophin as a ligand. Pleiotrophin inactivates the phosphatase activity of PTPzeta, resulting in the increase of tyrosine phosphorylation levels of its substrates. We studied the functional interaction between PTPzeta and DNER, a Notch-related transmembrane protein highly expressed in cerebellar Purkinje cells. PTPzeta and DNER displayed patchy colocalization in the dendrites of Purkinje cells, and immunoprecipitation experiments indicated that these proteins formed complexes. Several tyrosine residues in and adjacent to the tyrosine-based and the second C-terminal sorting motifs of DNER were phosphorylated and were dephosphorylated by PTPzeta, and phosphorylation of these tyrosine residues resulted in the accumulation of DNER on the plasma membrane. DNER mutants lacking sorting motifs accumulated on the plasma membrane of Purkinje cells and Neuro-2A cells and induced their process extension. While normal DNER was actively endocytosed and inhibited the retinoic-acid-induced neurite outgrowth of Neuro-2A cells, pleiotrophin stimulation increased the tyrosine phosphorylation level of DNER and suppressed the endocytosis of this protein, which led to the reversal of this inhibition, thus allowing neurite extension. These observations suggest that pleiotrophin-PTPzeta signaling controls subcellular localization of DNER and thereby regulates neuritogenesis.


Assuntos
Proteínas de Transporte/metabolismo , Cerebelo/metabolismo , Citocinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Linhagem Celular Tumoral , Cerebelo/química , Cerebelo/enzimologia , Cerebelo/crescimento & desenvolvimento , Chlorocebus aethiops , Endocitose , Imunoprecipitação , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/análise , Fosforilação , Sinais Direcionadores de Proteínas , Células de Purkinje/metabolismo , Ratos , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/química , Receptores de Superfície Celular/análise , Tirosina/metabolismo
14.
Proc Natl Acad Sci U S A ; 104(41): 16182-7, 2007 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-17913873

RESUMO

During neuronal migration in the developing brain, it is thought that the centrosome precedes the nucleus and provides a cue for nuclear migration along the microtubules. In time-lapse imaging studies of radially migrating granule cells in mouse cerebellar slices, we observed that the movements of the nucleus and centrosome appeared to occur independently of each other. The nucleus often migrated ahead of the centrosome during its saltatory movement, negating the supposed role of the centrosome in pulling the nucleus. The nucleus was associated with dynamic microtubules enveloping the entire nucleus and stable microtubules extending from the leading process to the anterior part of the nucleus. Neither of these perinuclear microtubules converged at the centrosome. Disruption or excess formation of stable microtubules attenuated nuclear migration, indicating that the configuration of stable microtubules is crucial for nuclear migration. The inhibition of LIS1 function, a regulator of a microtubule motor dynein, specifically blocks nuclear migration without affecting the coupling of the centrosome and microtubules in the leading process, suggesting that movements of the nucleus and centrosome are differentially regulated by dynein motor function. Thus, the nucleus moves along the microtubules independently of the position of the centrosome in migrating neurons.


Assuntos
Núcleo Celular/fisiologia , Microtúbulos/fisiologia , Neurônios/citologia , Neurônios/fisiologia , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Animais , Movimento Celular/fisiologia , Centrossomo/ultraestrutura , Cerebelo/citologia , Dineínas/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Proteínas Associadas aos Microtúbulos/metabolismo , Movimento , Neurônios/ultraestrutura
15.
J Neurochem ; 102(1): 77-92, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17564677

RESUMO

The septins constitute a family of GTPase proteins that are involved in many cytological processes such as cytokinesis and exocytosis. Previous studies have indicated that mammalian Sept3 is a brain-specific protein that is abundant in synaptic terminals. Here, we further investigated the localization and function of Sept3 in the mouse brain. Sept3 is expressed in several types of post-mitotic neurons, including granule cells in the cerebellum and pyramidal neurons in the cerebral cortex and hippocampus. In primary cultures of hippocampal pyramidal neurons, Sept3 protein is enriched at the tips of growing neurites during differentiation. Sept3 directly binds to Sept5 and Sept7 and forms a heteromeric complex at nerve terminals adjacent to where a synaptic vesicle marker, synaptophysin, is expressed in mature neurons. When over-expressed in HEK293 cells, Sept3 forms filamentous structures that are dependent on the presence of its GTP- and phosphoinositide-binding domains. To investigate the physiological roles of Sept3, we generated Sept3 deficient mice. These mice show no apparent abnormalities in histogenesis nor neuronal differentiation in culture. Expression of synaptic proteins and other septins are unaltered, indicating that Sept3 is dispensable for normal neuronal development.


Assuntos
Axônios/fisiologia , Proteínas de Ciclo Celular/fisiologia , Sistema Nervoso Central/fisiologia , GTP Fosfo-Hidrolases/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Neurônios/fisiologia , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Sistema Nervoso Central/citologia , Proteínas de Ligação ao GTP/genética , Glutationa/metabolismo , Imunoprecipitação , Hibridização In Situ , Camundongos , Camundongos Knockout , Microtúbulos/metabolismo , Dados de Sequência Molecular , Neuritos/fisiologia , Fosfatidilinositóis/metabolismo , Plasmídeos/genética , Proteínas Recombinantes/metabolismo , Septinas
16.
Dev Biol ; 290(2): 287-96, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16406324

RESUMO

Here, we report in vitro generation of Math1+ cerebellar granule cell precursors and Purkinje cells from ES cells by using soluble patterning signals. When neural progenitors induced from ES cells in a serum-free suspension culture are subsequently treated with BMP4 and Wnt3a, a significant proportion of these neural cells become Math1+. The induced Math1+ cells are mitotically active and express markers characteristic of granule cell precursors (Pax6, Zic1, and Zipro1). After purification by FACS and coculture with postnatal cerebellar neurons, ES cell-derived Math1+ cells exhibit typical features of neurons of the external granule cell layer, including extensive motility and a T-shaped morphology. Interestingly, differentiation of L7+/Calbindin-D28K+ neurons (characteristic of Purkinje cells) is induced under similar culture conditions but exhibits a higher degree of enhancement by Fgf8 rather than by Wnt3a. This is the first report of in vitro recapitulation of early differentiation of cerebellar neurons by using the ES cell system.


Assuntos
Técnicas de Cultura de Células/métodos , Embrião de Mamíferos/citologia , Neurônios/metabolismo , Células-Tronco/citologia , Animais , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Separação Celular , Transplante de Células , Células Cultivadas , Cerebelo/metabolismo , Meios de Cultura Livres de Soro/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Camundongos , Microscopia de Fluorescência , Células de Purkinje/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , Proteína Wnt3 , Proteína Wnt3A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA