Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 24(3): 582-91, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26444081

RESUMO

Many applications of pluripotent stem cells (PSCs) require efficient editing of silent chromosomal genes. Here, we show that a major limitation in isolating edited clones is silencing of the selectable marker cassette after homologous recombination and that this can be overcome by using a ubiquitous chromatin opening element (UCOE) promoter-driven transgene. We use this strategy to edit the silent IL2RG locus in human PSCs with a recombinant adeno-associated virus (rAAV)-targeting vector in the absence of potentially genotoxic, site-specific nucleases and show that IL2RG is required for natural killer and T-cell differentiation of human PSCs. Insertion of an active UCOE promoter into a silent locus altered the histone modification and cytosine methylation pattern of surrounding chromatin, but these changes resolved when the UCOE promoter was removed. This same approach could be used to correct IL2RG mutations in X-linked severe combined immunodeficiency patient-derived induced PSCs (iPSCs), to prevent graft versus host disease in regenerative medicine applications, or to edit other silent genes.


Assuntos
Edição de Genes , Inativação Gênica , Subunidade gama Comum de Receptores de Interleucina/genética , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Sobrevivência Celular/genética , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Epigênese Genética , Técnicas de Inativação de Genes , Marcação de Genes , Loci Gênicos , Humanos , Células Matadoras Naturais/citologia , Células-Tronco Pluripotentes/citologia , Regiões Promotoras Genéticas , Subpopulações de Linfócitos T/citologia , Transgenes , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética
2.
Nat Cell Biol ; 17(5): 580-91, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25915127

RESUMO

The generation of haematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) will depend on the accurate recapitulation of embryonic haematopoiesis. In the early embryo, HSCs develop from the haemogenic endothelium (HE) and are specified in a Notch-dependent manner through a process named endothelial-to-haematopoietic transition (EHT). As HE is associated with arteries, it is assumed that it represents a subpopulation of arterial vascular endothelium (VE). Here we demonstrate at a clonal level that hPSC-derived HE and VE represent separate lineages. HE is restricted to the CD34(+)CD73(-)CD184(-) fraction of day 8 embryoid bodies and it undergoes a NOTCH-dependent EHT to generate RUNX1C(+) cells with multilineage potential. Arterial and venous VE progenitors, in contrast, segregate to the CD34(+)CD73(med)CD184(+) and CD34(+)CD73(hi)CD184(-) fractions, respectively. Together, these findings identify HE as distinct from VE and provide a platform for defining the signalling pathways that regulate their specification to functional HSCs.


Assuntos
Artérias/fisiologia , Diferenciação Celular , Linhagem da Célula , Células Progenitoras Endoteliais/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Células-Tronco Multipotentes/fisiologia , Células-Tronco Pluripotentes/fisiologia , 5'-Nucleotidase/deficiência , Antígenos CD34/metabolismo , Artérias/citologia , Artérias/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Separação Celular/métodos , Técnicas de Cocultura , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células Progenitoras Endoteliais/metabolismo , Proteínas Ligadas por GPI/deficiência , Células-Tronco Hematopoéticas/metabolismo , Humanos , Microscopia de Vídeo , Células-Tronco Multipotentes/metabolismo , Fenótipo , Células-Tronco Pluripotentes/metabolismo , Células Precursoras de Linfócitos T/fisiologia , Receptores CXCR5/deficiência , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Tempo , Veias/citologia , Veias/fisiologia
3.
Nat Biotechnol ; 32(6): 554-61, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24837661

RESUMO

Efforts to derive hematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) are complicated by the fact that embryonic hematopoiesis consists of two programs, primitive and definitive, that differ in developmental potential. As only definitive hematopoiesis generates HSCs, understanding how this program develops is essential for being able to produce this cell population in vitro. Here we show that both hematopoietic programs transition through hemogenic endothelial intermediates and develop from KDR(+)CD34(-)CD144(-) progenitors that are distinguished by CD235a expression. Generation of primitive progenitors (KDR(+)CD235a(+)) depends on stage-specific activin-nodal signaling and inhibition of the Wnt-ß-catenin pathway, whereas specification of definitive progenitors (KDR(+)CD235a(-)) requires Wnt-ß-catenin signaling during this same time frame. Together, these findings establish simple selective differentiation strategies for the generation of primitive or definitive hematopoietic progenitors by Wnt-ß-catenin manipulation, and in doing so provide access to enriched populations for future studies on hPSC-derived hematopoietic development.


Assuntos
Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Camundongos
4.
Cell Rep ; 2(6): 1722-35, 2012 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-23219550

RESUMO

The efficient generation of hematopoietic stem cells from human pluripotent stem cells is dependent on the appropriate specification of the definitive hematopoietic program during differentiation. In this study, we used T lymphocyte potential to track the onset of definitive hematopoiesis from human embryonic and induced pluripotent stem cells differentiated with specific morphogens in serum- and stromal-free cultures. We show that this program develops from a progenitor population with characteristics of hemogenic endothelium, including the expression of CD34, VE-cadherin, GATA2, LMO2, and RUNX1. Along with T cells, these progenitors display the capacity to generate myeloid and erythroid cells. Manipulation of Activin/Nodal signaling during early stages of differentiation revealed that development of the definitive hematopoietic progenitor population is not dependent on this pathway, distinguishing it from primitive hematopoiesis. Collectively, these findings demonstrate that it is possible to generate T lymphoid progenitors from pluripotent stem cells and that this lineage develops from a population whose emergence marks the onset of human definitive hematopoiesis.


Assuntos
Antígenos de Diferenciação/biossíntese , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Células-Tronco Pluripotentes/metabolismo , Células Precursoras de Linfócitos T/metabolismo , Transdução de Sinais/fisiologia , Linfócitos T/metabolismo , Linhagem Celular , Humanos , Células-Tronco Pluripotentes/citologia , Células Precursoras de Linfócitos T/citologia , Linfócitos T/citologia
5.
Nat Cell Biol ; 13(9): 1092-9, 2011 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-21804543

RESUMO

Pluripotency of embryonic stem cells (ESCs) is defined by their ability to differentiate into three germ layers and derivative cell types and is established by an interactive network of proteins including OCT4 (also known as POU5F1; ref. 4), NANOG (refs 5, 6), SOX2 (ref. 7) and their binding partners. The forkhead box O (FoxO) transcription factors are evolutionarily conserved regulators of longevity and stress response whose function is inhibited by AKT protein kinase. FoxO proteins are required for the maintenance of somatic and cancer stem cells; however, their function in ESCs is unknown. We show that FOXO1 is essential for the maintenance of human ESC pluripotency, and that an orthologue of FOXO1 (Foxo1) exerts a similar function in mouse ESCs. This function is probably mediated through direct control by FOXO1 of OCT4 and SOX2 gene expression through occupation and activation of their respective promoters. Finally, AKT is not the predominant regulator of FOXO1 in human ESCs. Together these results indicate that FOXO1 is a component of the circuitry of human ESC pluripotency. These findings have critical implications for stem cell biology, development, longevity and reprogramming, with potentially important ramifications for therapy.


Assuntos
Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes/metabolismo , Animais , Apoptose , Sequência de Bases , Western Blotting , Linhagem Celular , Proliferação de Células , Doxiciclina/farmacologia , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Proteínas de Homeodomínio/genética , Humanos , Dados de Sequência Molecular , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXB1/genética
6.
Blood ; 115(14): 2769-76, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20065292

RESUMO

The directed differentiation of human pluripotent stem cells offers the unique opportunity to generate a broad spectrum of human cell types and tissues for transplantation, drug discovery, and studying disease mechanisms. Here, we report the stepwise generation of bone-resorbing osteoclasts from human embryonic and induced pluripotent stem cells. Generation of a primitive streak-like population in embryoid bodies, followed by specification to hematopoiesis and myelopoiesis by vascular endothelial growth factor and hematopoietic cytokines in serum-free media, yielded a precursor population enriched for cells expressing the monocyte-macrophage lineage markers CD14, CD18, CD11b, and CD115. When plated in monolayer culture in the presence of macrophage colony-stimulating factor and receptor activator of nuclear factor-kappaB ligand (RANKL), these precursors formed large, multinucleated osteoclasts that expressed tartrate-resistant acid phosphatase and were capable of resorption. No tartrate-resistant acid phosphatase-positive multinucleated cells or resorption pits were observed in the absence of RANKL. Molecular analyses confirmed the expression of the osteoclast marker genes NFATc1, cathepsin K, and calcitonin receptor in a RANKL-dependent manner, and confocal microscopy demonstrated the coexpression of the alphavbeta3 integrin, cathepsin K and F-actin rings characteristic of active osteoclasts. Generating hematopoietic and osteoclast populations from human embryonic and induced pluripotent stem cells will be invaluable for understanding embryonic bone development and postnatal bone disease.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Osteoclastos/metabolismo , Antígenos de Diferenciação/biossíntese , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Mielopoese/efeitos dos fármacos , Mielopoese/fisiologia , Osteoclastos/citologia , Ligante RANK/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
7.
Proc Natl Acad Sci U S A ; 106(18): 7571-6, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19372372

RESUMO

A variety of viruses establish latency by integrating their genome into the host genome. The integration event generally occurs in a nonspecific manner, precluding the prediction of functional consequences from resulting disruptions of affected host genes. The nonpathogenic adeno-associated virus (AAV) is unique in its ability to stably integrate in a site-specific manner into the human MBS85 gene. To gain a better understanding of the integration mechanism and the consequences of MBS85 disruption, we analyzed the molecular structure of AAV integrants in various latently infected human cell lines. Our study led to the observation that AAV integration causes an extensive but partial duplication of the target gene. Intriguingly, the molecular organization of the integrant leaves the possibility that a functional copy of the disrupted target gene could potentially be preserved despite the resulting rearrangements. A latently infected, Mbs85-targeted mouse ES cell line was generated to study the functional consequences of the observed duplication-based integration mechanism. AAV-modified ES cell lines continued to self-renew, maintained their multilineage differentiation potential and contributed successfully to mouse development when injected into blastocysts. Thus, our study reveals a viral strategy for targeted genome addition with the apparent absence of functional consequences.


Assuntos
Dependovirus/genética , Marcação de Genes/métodos , Provírus/genética , Integração Viral , Latência Viral , Animais , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Expressão Gênica , Humanos , Camundongos , Proteína Fosfatase 1/genética
8.
Nature ; 453(7194): 524-8, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18432194

RESUMO

The functional heart is comprised of distinct mesoderm-derived lineages including cardiomyocytes, endothelial cells and vascular smooth muscle cells. Studies in the mouse embryo and the mouse embryonic stem cell differentiation model have provided evidence indicating that these three lineages develop from a common Flk-1(+) (kinase insert domain protein receptor, also known as Kdr) cardiovascular progenitor that represents one of the earliest stages in mesoderm specification to the cardiovascular lineages. To determine whether a comparable progenitor is present during human cardiogenesis, we analysed the development of the cardiovascular lineages in human embryonic stem cell differentiation cultures. Here we show that after induction with combinations of activin A, bone morphogenetic protein 4 (BMP4), basic fibroblast growth factor (bFGF, also known as FGF2), vascular endothelial growth factor (VEGF, also known as VEGFA) and dickkopf homolog 1 (DKK1) in serum-free media, human embryonic-stem-cell-derived embryoid bodies generate a KDR(low)/C-KIT(CD117)(neg) population that displays cardiac, endothelial and vascular smooth muscle potential in vitro and, after transplantation, in vivo. When plated in monolayer cultures, these KDR(low)/C-KIT(neg) cells differentiate to generate populations consisting of greater than 50% contracting cardiomyocytes. Populations derived from the KDR(low)/C-KIT(neg) fraction give rise to colonies that contain all three lineages when plated in methylcellulose cultures. Results from limiting dilution studies and cell-mixing experiments support the interpretation that these colonies are clones, indicating that they develop from a cardiovascular colony-forming cell. Together, these findings identify a human cardiovascular progenitor that defines one of the earliest stages of human cardiac development.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Miócitos Cardíacos/citologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ativinas/farmacologia , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/transplante , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-kit/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/deficiência , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
9.
Blood ; 109(2): 516-23, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16990609

RESUMO

Bone morphogenetic protein (BMP) signaling is an important regulator of hematovascular development. However, the progenitor population that responds to BMP signaling is undefined, and the relative role of downstream mediators including Smad1 is unclear. We find that Smad1 shows a distinctive expression profile as embryonic stem (ES) cells undergo differentiation in the embryoid body (EB) system, with peak levels in cell populations enriched for the hemangioblast. To test the functional relevance of this observation, we generated an ES cell line that allows temporal control of ectopic Smad1 expression. Continuous expression of Smad1 from day 2 of EB culture does not disturb hematopoiesis, according to colony assays. In contrast, a pulse of Smad1 expression exclusively between day 2 and day 2.25 expands the population of progenitors for primitive erythroblasts and other hematopoietic lineages. This effect correlates with increased levels of transcripts encoding markers for the hemangioblast, including Runx1, Scl, and Gata2. Indeed, the pulse of Smad1 induction also expands the blast colony-forming cell (BL-CFC) population at a level that is fully sufficient to explain subsequent increases in hematopoiesis. Our data demonstrate that Smad1 expression is sufficient to expand the number of cells that commit to hemangioblast fate.


Assuntos
Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteína Smad1/fisiologia , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Transdução de Sinais/fisiologia , Proteína Smad1/biossíntese , Proteína Smad1/genética , Fatores de Tempo
10.
Blood ; 109(7): 2679-87, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17148580

RESUMO

The onset of hematopoiesis in the mouse embryo and in the embryonic stem (ES) cell differentiation model is defined by the emergence of the hemangioblast, a progenitor with both hematopoietic and vascular potential. While there is evidence for the existence of a hemangioblast in the mouse, it is unclear if this progenitor develops during the establishment of the human hematopoietic system. In this report, we have mapped hematopoietic development in human ES cell (hESC) differentiation cultures and demonstrated that a comparable hemangioblast population exists. The human hemangioblasts were identified by their capacity to generate blast colonies that display both hematopoietic and vascular potential. These colony-forming cells express the receptor tyrosine kinase KDR (VEGF receptor 2) and represent a transient population that develops in BMP-4-stimulated embryoid bodies (EBs) between 72 and 96 hours of differentiation, prior to the onset of the primitive erythroid program. Two distinct types of hemangioblasts were identified, those that give rise to primitive erythroid cells, macrophages, and endothelial cells and those that generate only the primitive erythroid population and endothelial cells. These findings demonstrate for the first time the existence of the human hemangioblast and in doing so identify the earliest stage of hematopoietic commitment.


Assuntos
Células-Tronco Embrionárias/citologia , Hematopoese/fisiologia , Sequência de Bases , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Citocinas/fisiologia , Primers do DNA/genética , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Eritropoese/efeitos dos fármacos , Eritropoese/genética , Eritropoese/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
11.
Blood ; 105(12): 4590-7, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15728128

RESUMO

In this report we have investigated the role of the homeobox gene Hex in the development and differentiation of the blast colony-forming cell (BL-CFC), a progenitor with hemangioblast characteristics generated in embryonic stem (ES) cell-derived embryoid bodies (EBs). Molecular analysis showed that Hex is expressed in mesoderm, in populations that contain BL-CFCs, and in blast cell colonies, the progeny of the BL-CFCs. Hex(-/-) EBs displayed a defect in macrophage development but generated higher numbers of BL-CFCs than did wild-type EBs. In addition to differences in these progenitor populations, we also found that endothelial cells from the Hex(-/-) EBs showed enhanced proliferative potential compared with those from wild-type EBs. Forced expression of Hex at the onset of ES cell differentiation resulted in reduced EB cellularity, fetal liver kinase-1 (Flk-1) expression, and BL-CFC development. Taken together, these findings demonstrate that Hex functions at multiple stages of development within the differentiating EBs and uncover a novel role for this transcription factor as a negative regulator of the hemangioblast and the endothelial lineage.


Assuntos
Embrião de Mamíferos/citologia , Endotélio Vascular/citologia , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/fisiologia , Neovascularização Fisiológica , Células-Tronco/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Separação Celular , DNA Complementar/metabolismo , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Macrófagos/metabolismo , Mesoderma/metabolismo , Camundongos , Modelos Biológicos , Neurônios/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcrição Gênica
12.
Development ; 131(7): 1651-62, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14998924

RESUMO

The cellular and molecular events regulating the induction and tissue-specific differentiation of endoderm are central to our understanding of the development and function of many organ systems. To define and characterize key components in this process, we have investigated the potential of embryonic stem (ES) cells to generate endoderm following their differentiation to embryoid bodies (EBs) in culture. We found that endoderm can be induced in EBs, either by limited exposure to serum or by culturing in the presence of activin A (activin) under serum-free conditions. By using an ES cell line with the green fluorescent protein (GFP) cDNA targeted to the brachyury locus, we demonstrate that endoderm develops from a brachyury(+) population that also displays mesoderm potential. Transplantation of cells generated from activin-induced brachyury(+) cells to the kidney capsule of recipient mice resulted in the development of endoderm-derived structures. These findings demonstrate that ES cells can generate endoderm in culture and, as such, establish this differentiation system as a unique murine model for studying the development and specification of this germ layer.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Indução Embrionária/fisiologia , Endoderma/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Ativinas/metabolismo , Animais , Linhagem Celular , Linhagem da Célula , Transplante de Células , Meios de Cultura Livres de Soro , Endoderma/citologia , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Proteínas de Fluorescência Verde , Células-Tronco Hematopoéticas/citologia , Hepatócitos/citologia , Hepatócitos/fisiologia , Humanos , Subunidades beta de Inibinas/metabolismo , Rim/anatomia & histologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mesoderma/fisiologia , Camundongos , Camundongos SCID , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
14.
Development ; 130(17): 4217-27, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12874139

RESUMO

The hematopoietic and endothelial lineages derive from mesoderm and are thought to develop through the maturation of a common progenitor, the hemangioblast. To investigate the developmental processes that regulate mesoderm induction and specification to the hemangioblast, we generated an embryonic stem cell line with the green fluorescent protein (GFP) targeted to the mesodermal gene, brachyury. After the in vitro differentiation of these embryonic stem cells to embryoid bodies, developing mesodermal progenitors could be separated from those with neuroectoderm potential based on GFP expression. Co-expression of GFP with the receptor tyrosine kinase Flk1 revealed the emergence of three distinct cell populations, GFP(-)Flk1(-), GFP(+)Flk1(-) and GFP(+)Flk1(+) cells, which represent a developmental progression ranging from pre-mesoderm to prehemangioblast mesoderm to the hemangioblast.


Assuntos
Diferenciação Celular/fisiologia , Indução Embrionária/fisiologia , Proteínas Fetais , Mesoderma/fisiologia , Células-Tronco/fisiologia , Animais , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
15.
Blood ; 100(2): 458-66, 2002 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12091336

RESUMO

In this report we demonstrate a role for Runx1 (AML1) at the hemangioblast stage of hematopoietic and endothelial development in embryonic stem (ES) cell-derived embryoid bodies (EBs). Runx1 is expressed in EBs during the appearance of precursors with hemangioblast properties, the blast colony-forming cells (BL-CFCs). Cell sorting studies revealed that all BL-CFCs within EBs express Runx1. Runx1-deficient EBs consistently generate 10- to 20-fold fewer blast colonies than wild-type controls and display a complete block in definitive hematopoiesis. Despite this defect, Runx1-/- EBs and yolk sacs from mutant embryos generate normal numbers of primitive erythroid precursors. These observations clearly demonstrate that Runx1 functions early in hematopoietic development, and they support the interpretation that the primitive erythroid lineage is established early by a subset of BL-CFCs that develop in a Runx1-independent fashion.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Embrião de Mamíferos/citologia , Hematopoese/efeitos dos fármacos , Proteínas Proto-Oncogênicas , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular/genética , Subunidade alfa 2 de Fator de Ligação ao Core , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Eritropoese/efeitos dos fármacos , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos , RNA Mensageiro/análise , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Saco Vitelino/citologia
16.
Methods Mol Med ; 63: 209-30, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-21437810

RESUMO

Under appropriate culture conditions, ES cells will spontaneously differentiate and generate colonies known as embryoid bodies (EBs) that contain precursors of multiple lineages, including those of the hematopoietic system (1-7). Previous studies have demonstrated that the molecular events leading to hematopoietic commitment, as well as the kinetics of lineage development within the EBs, parallel that found in the normal mouse embryo (5). More recent studies (8-11) have supported these earlier findings and have provided evidence that hematopoietic development within EBs can be divided into the following distinct stages: hemangioblast, primitive and early definitive, and multilineage definitive. These stages most closely correspond to the preblood island, the early-mid yolk sac, and the late yolk sac-early fetal-liver hematopoietic programs within the mouse embryo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA