Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Carbohydr Res ; 535: 109014, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157585

RESUMO

Nanomaterials have lately been investigated in agriculture as eco-friendly and effective antifungal agents. Many nanomaterials, notably metal nanoparticles, have strong antifungal properties. Among metal nanoparticles, Ag nanoparticles have received the most attention as antifungal agents. Many plant lectins have been identified as antifungal agents. Conjugating AgNPs with antifungal lectins is thus expected to improve Ag nanoparticle antifungal efficacy. Understanding the molecular interactions and physical features of lectin-sugar-stabilised nanoparticle conjugates is critical for future applications. WGA has traditionally been used as an anti-tumor and antifungal agent. To investigate the prospect of developing an effective biocompatible antifungal system with applications in medicine and agriculture, fluorescence spectroscopy was used to investigate the interaction between sugar-stabilised silver nanoparticles and WGA. During the association, protein intrinsic fluorescence emission is suppressed by about ∼15 % at saturation, with no significant shift in fluorescence emission maxima. Binding tests reveal a strong bond. Stern-Volmer analysis of the quenching data indicates that the interaction happens via a static quenching process that induces complex formation. The study of hemagglutination activity and interaction experiments in the presence of particular sugar shows that the lectin's sugar-binding site is separate from the nanoparticle-binding site, and cell recognition is conserved in the lectin-nanoparticle complex. The Van't Hoff plot thermodynamic parameters suggest that the contact is hydrophobic. The fact that ΔGo is negative shows that the binding is a spontaneous process. CD spectroscopy experiments reveal that the lectin's secondary structure is not affected while binding to the nanoparticle. Our findings suggest that a stable WGA-silver nanoparticle combination may emerge for a variety of applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Lectinas , Açúcares , Prata/química , Antifúngicos , Aglutininas do Germe de Trigo , Termodinâmica , Carboidratos/química , Espectrometria de Fluorescência , Sítios de Ligação , Quitina , Ligação Proteica
2.
Glycoconj J ; 40(2): 179-189, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36800135

RESUMO

Sugar-stabilised nanomaterials have received a lot of attention in cancer therapy in recent years due to their pronounced application as specific targeting agents and maximizing their therapeutic potential while bypassing off-target effects. Lectins, the carbohydrate-binding proteins, are capable of binding to receptors present on the target cell/tissue and interact with transformed glycans better than normal cells. Besides some of the lectins exhibit anticancer activity. Conjugating sugar-stabilised NPs with lectins there for is expected to multiply the potential for the early diagnosis of cancer cells and the specific release of drugs into the tumor site. Because of the prospective applications of lectin-sugar-stabilised nanoparticle conjugates, it is important to understand their molecular interaction and physicochemical properties. Momordica charantia Seed Lectin (MCL) is a type II RIP and has been known as an anti-tumor agent. Investigation of the interaction between sugar-stabilised silver nanoparticles and MCL has been performed by fluorescence spectroscopy to explore the possibility of creating an effective biocompatible drug delivery system against cancer cells. In this regard interaction between lectin and NPs should be well-preserved, while recognizing the specific cell surface sugar. Therefore experiments were carried out in the presence and absence of specific sugar galactose. Protein intrinsic fluorescence emission is quenched at ~ 20% at saturation during the interaction without any significant shift in fluorescence emission maximum. Binding experiments reveal a good affinity. Tetrameric MCL binds to a single nanoparticle. Stern-Volmer analysis of the quenching data suggests that the interaction is via static quenching leading to complex formation. Hemagglutination experiments together with interaction studies in the presence of specific sugar show that the sugar-binding site of the lectin is distinct from the nanoparticle-binding site and cell recognition is very much intact even after binding to AgNPs. Our results propose the possibility of developing MCL-silver nanoparticle conjugate with high stability and multiple properties in the diagnosis and treatment of cancer.


Assuntos
Nanopartículas Metálicas , Momordica charantia , Lectinas/metabolismo , Açúcares/metabolismo , Momordica charantia/química , Momordica charantia/metabolismo , Prata/análise , Prata/metabolismo , Carboidratos/análise , Sementes/química , Proteínas Inativadoras de Ribossomos/farmacologia , Proteínas Inativadoras de Ribossomos/análise , Proteínas Inativadoras de Ribossomos/metabolismo , Lectinas de Plantas/farmacologia , Lectinas de Plantas/química
3.
Arch Biochem Biophys ; 432(2): 212-21, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15542060

RESUMO

A new galactose-specific lectin has been purified from the extracts of Trichosanthes dioica seeds by affinity chromatography on cross-linked guar gum. The purified lectin (T. dioica seed lectin, TDSL) moved as a single symmetrical peak on gel filtration on Superose-12 in the presence of 0.1 M lactose with an M(r) of 55 kDa. In the absence of ligand, the movement was retarded, indicating a possible interaction of the lectin with the column matrix. In SDS-PAGE, in the presence of beta-mercaptoethanol, two non-identical bands of M(r) 24 and 37 kDa were observed, whereas in the absence of beta-mercaptoethanol, the lectin yielded a single band corresponding to approximately 55,000 Da, indicating that the two subunits of TDSL are connected by one or more disulfide bridges. TDSL is a glycoprotein with about 4.9% covalently bound neutral sugar. Analysis of near-UV CD spectrum by three different methods (CDSSTR, CONTINLL, and SELCON3) shows that TDSL contains 13.3% alpha-helix, 36.7% beta-sheet, 19.4% beta-turns, and 31.6% unordered structure. Among a battery of sugars investigated, TDSL was inhibited strongly by beta-d-galactopyranosides, with 4-methylumbelliferyl-beta-d-galactopyranoside being the best ligand. Chemical modification studies indicate that tyrosine residues are important for the carbohydrate-binding and hemagglutinating activities of the lectin. A partial protection was observed when the tyrosine modification was performed in the presence of 0.2 M lactose. The tryptophan residues of TDSL appear to be buried in the protein interior as they could not be modified under native conditions, whereas upon denaturation with 8 M urea two Trp residues could be selectively modified by N-bromosuccinimide. The subunit composition and size, secondary structure, and sugar specificity of this lectin are similar to those of type-2 ribosome inactivating proteins, suggesting that TDSL may belong to this protein family.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Galactose/química , Lectinas de Plantas/química , Sementes/metabolismo , Trichosanthes/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Configuração de Carboidratos , Carboidratos/química , Dimerização , Dissacarídeos/química , Substâncias Macromoleculares/química , Peso Molecular , Lectinas de Plantas/análise , Lectinas de Plantas/isolamento & purificação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Especificidade da Espécie , Relação Estrutura-Atividade , Especificidade por Substrato , Trichosanthes/classificação
4.
Arch Biochem Biophys ; 413(1): 131-8, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12706350

RESUMO

Physicochemical and saccharide-binding studies have been performed on Trichosanthes cucumerina seed lectin (TCSL). The agglutination activity of TCSL is highest in the pH range 8.0-11.0, whereas below pH 7.0 it decreases quite rapidly, which is consistent with the involvement of imidazole side chains of His residues, which titrate in this pH range, in the sugar-binding activity of the lectin. The lectin activity is unaffected between 0 and 60 degrees C, but a sharp decline occurs at higher temperatures. Isoelectric focusing studies show that TCSL has three isoforms with pI values of 5.3, 6.2, and 7.1, with the isoform of pI 6.2 being the most abundant. Circular dichroism spectroscopic studies reveal that TCSL contains about 28.4% beta-sheet, 10.6% beta-turns, 7% polyproline type 2 structure, with the remainder comprising unordered structure; the alpha-helix content is negligible. Binding of 4-methylumbelliferyl-beta-D-galactopyranoside (MeUmbbetaGal) to TCSL results in a significant increase in the fluorescence intensity of the ligand, and this change has been used to obtain the association constant for the interaction. At 25 degrees C, the association constant, K(a), for the TCSL-MeUmbbetaGal interaction was determined as 6.9 x 10(4)M(-1). Binding of nonfluorescent, inhibitory sugars was studied by monitoring their ability to reverse the fluorescence changes observed when MeUmbbetaGal was titrated with TCSL.


Assuntos
Himecromona/análogos & derivados , Lectinas de Plantas/química , Lectinas de Plantas/metabolismo , Trichosanthes/metabolismo , Metabolismo dos Carboidratos , Fenômenos Químicos , Físico-Química , Dicroísmo Circular , Estabilidade de Medicamentos , Galactose/metabolismo , Glicosídeos/metabolismo , Concentração de Íons de Hidrogênio , Himecromona/metabolismo , Cinética , Ligantes , Estrutura Secundária de Proteína , Sementes/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA