Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Transl Med ; 16(739): eadj0616, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507468

RESUMO

Complete sequestration of central nervous system tissue and cerebrospinal fluid by the dural membrane is fundamental to maintaining homeostasis and proper organ function, making reconstruction of this layer an essential step during neurosurgery. Primary closure of the dura by suture repair is the current standard, despite facing technical, microenvironmental, and anatomic challenges. Here, we apply a mechanically tough hydrogel paired with a bioadhesive for intraoperative sealing of the dural membrane in rodent, porcine, and human central nervous system tissue. Tensile testing demonstrated that this dural tough adhesive (DTA) exhibited greater toughness with higher maximum stress and stretch compared with commercial sealants in aqueous environments. To evaluate the performance of DTA in the range of intracranial pressure typical of healthy and disease states, ex vivo burst pressure testing was conducted until failure after DTA or commercial sealant application on ex vivo porcine dura with a punch biopsy injury. In contrast to commercial sealants, DTA remained adhered to the porcine dura through increasing pressure up to 300 millimeters of mercury and achieved a greater maximum burst pressure. Feasibility of DTA to repair cerebrospinal fluid leak in a simulated surgical context was evaluated in postmortem human dural tissue. DTA supported effective sutureless repair of the porcine thecal sac in vivo. Biocompatibility and adhesion of DTA was maintained for up to 4 weeks in rodents after implantation. The findings suggest the potential of DTA to augment or perhaps even supplant suture repair and warrant further exploration.


Assuntos
Hidrogéis , Adesivos Teciduais , Humanos , Animais , Suínos , Hidrogéis/farmacologia , Vazamento de Líquido Cefalorraquidiano/cirurgia , Procedimentos Neurocirúrgicos , Dura-Máter/cirurgia , Sistema Nervoso Central , Adesivos Teciduais/farmacologia
2.
Proc Natl Acad Sci U S A ; 121(9): e2304643121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377210

RESUMO

Generating strong rapid adhesion between hydrogels has the potential to advance the capabilities of modern medicine and surgery. Current hydrogel adhesion technologies rely primarily on liquid-based diffusion mechanisms and the formation of covalent bonds, requiring prolonged time to generate adhesion. Here, we present a simple and versatile strategy using dry chitosan polymer films to generate instant adhesion between hydrogel-hydrogel and hydrogel-elastomer surfaces. Using this approach we can achieve extremely high adhesive energies (>3,000 J/m2), which are governed by pH change and non-covalent interactions including H-bonding, Van der Waals forces, and bridging polymer entanglement. Potential examples of biomedical applications are presented, including local tissue cooling, vascular sealing, prevention of surgical adhesions, and prevention of hydrogel dehydration. We expect these findings and the simplicity of this approach to have broad implications for adhesion strategies and hydrogel design.


Assuntos
Adesivos , Polímeros , Humanos , Aderências Teciduais/prevenção & controle , Adesivos/química , Elastômeros , Hidrogéis/química
3.
Bioessays ; 45(10): e2200239, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37350339

RESUMO

The human and mouse genomes are complex from a genomic standpoint. Each cell has the same genomic sequence, yet a wide array of cell types exists due to the presence of a plethora of regulatory elements in the non-coding genome. Recent advances in epigenomic profiling have uncovered non-coding gene proximal promoters and distal enhancers of transcription genome-wide. Extension of promoter-associated H3K4me3 histone mark across the gene body, known as a broad H3K4me3 domain (H3K4me3-BD), is a signature of constitutive expression of cell-type-specific regulation and of tumour suppressor genes in healthy cells. Recently, it has been discovered that the presence of H3K4me3-BDs over oncogenes is a cancer-specific feature associated with their dysregulated gene expression and tumourigenesis. Moreover, it has been shown that the hijacking of clusters of enhancers, known as super-enhancers (SE), by proto-oncogenes results in the presence of H3K4me3-BDs over the gene body. Therefore, H3K4me3-BDs and SE crosstalk in healthy and cancer cells therefore represents an important mechanism to identify future treatments for patients with SE driven cancers.


Assuntos
Elementos Facilitadores Genéticos , Neoplasias , Humanos , Animais , Camundongos , Elementos Facilitadores Genéticos/genética , Histonas/genética , Histonas/metabolismo , Regiões Promotoras Genéticas/genética , Código das Histonas/genética , Neoplasias/genética
4.
Genome Res ; 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35863900

RESUMO

Genomic rearrangements are known to result in proto-oncogene deregulation in many cancers, but the link to 3D genome structure remains poorly understood. Here, we used the highly predictive heteromorphic polymer (HiP-HoP) model to predict chromatin conformations at the proto-oncogene CCND1 in healthy and malignant B cells. After confirming that the model gives good predictions of Hi-C data for the nonmalignant human B cell-derived cell line GM12878, we generated predictions for two cancer cell lines, U266 and Z-138. These possess genome rearrangements involving CCND1 and the immunoglobulin heavy locus (IGH), which we mapped using targeted genome sequencing. Our simulations showed that a rearrangement in U266 cells where a single IGH super-enhancer is inserted next to CCND1 leaves the local topologically associated domain (TAD) structure intact. We also observed extensive changes in enhancer-promoter interactions within the TAD, suggesting that it is the downstream chromatin remodeling which gives rise to the oncogene activation, rather than the presence of the inserted super-enhancer DNA sequence per se. Simulations of the IGH-CCND1 reciprocal translocation in Z-138 cells revealed that an oncogenic fusion TAD is created, encompassing CCND1 and the IGH super-enhancers. We predicted how the structure and expression of CCND1 changes in these different cell lines, validating this using qPCR and fluorescence in situ hybridization microscopy. Our work demonstrates the power of polymer simulations to predict differences in chromatin interactions and gene expression for different translocation breakpoints.

5.
Genome Res ; 32(7): 1343-1354, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34933939

RESUMO

Chromosomal translocations are important drivers of haematological malignancies whereby proto-oncogenes are activated by juxtaposition with enhancers, often called enhancer hijacking We analyzed the epigenomic consequences of rearrangements between the super-enhancers of the immunoglobulin heavy locus (IGH) and proto-oncogene CCND1 that are common in B cell malignancies. By integrating BLUEPRINT epigenomic data with DNA breakpoint detection, we characterized the normal chromatin landscape of the human IGH locus and its dynamics after pathological genomic rearrangement. We detected an H3K4me3 broad domain (BD) within the IGH locus of healthy B cells that was absent in samples with IGH-CCND1 translocations. The appearance of H3K4me3-BD over CCND1 in the latter was associated with overexpression and extensive chromatin accessibility of its gene body. We observed similar cancer-specific H3K4me3-BDs associated with hijacking of super-enhancers of other common oncogenes in B cell (MAF, MYC, and FGFR3/NSD2) and T cell malignancies (LMO2, TLX3, and TAL1). Our analysis suggests that H3K4me3-BDs can be created by super-enhancers and supports the new concept of epigenomic translocation, in which the relocation of H3K4me3-BDs from cell identity genes to oncogenes accompanies the translocation of super-enhancers.


Assuntos
Epigenômica , Translocação Genética , Cromatina/genética , Histonas , Humanos , Oncogenes
6.
Sci Robot ; 6(50)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34043580

RESUMO

The creation of multiarticulated mechanisms for use with minimally invasive surgical tools is difficult because of fabrication, assembly, and actuation challenges on the millimeter scale of these devices. Nevertheless, such mechanisms are desirable for granting surgeons greater precision and dexterity to manipulate and visualize tissue at the surgical site. Here, we describe the construction of a complex optoelectromechanical device that can be integrated with existing surgical tools to control the position of a fiber-delivered laser. By using modular assembly and a laminate fabrication method, we are able to create a smaller and higher-bandwidth device than the current state of the art while achieving a range of motion similar to existing tools. The device we present is 6 millimeters in diameter and 16 millimeters in length and is capable of focusing and steering a fiber-delivered laser beam at high speed (1.2-kilohertz bandwidth) over a large range (over ±10 degrees in both of two axes) with excellent static repeatability (200 micrometers).


Assuntos
Terapia a Laser/instrumentação , Procedimentos Cirúrgicos Minimamente Invasivos/instrumentação , Procedimentos Cirúrgicos Robóticos/instrumentação , Desenho de Equipamento , Humanos , Lasers , Fenômenos Mecânicos , Microtecnologia , Fibras Ópticas , Fenômenos Ópticos , Amplitude de Movimento Articular , Instrumentos Cirúrgicos
7.
Acad Med ; 96(9): 1306-1310, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33538475

RESUMO

PROBLEM: Health professions education does not routinely incorporate training in innovation or creative problem solving. Although some models of innovation education within graduate medical education exist, they often require participants' full-time commitment and removal from clinical training or rely upon participants' existing expertise. There is a need for curricula that teach innovation skills that will enable trainees to identify and solve unmet clinical challenges in everyday practice. To address this gap in surgical graduate education, the authors developed the Surgical Program in Innovation (SPIN). APPROACH: SPIN, a 6-month workshop-based curriculum, was established in 2016 in the Beth Israel Deaconess Medical Center Department of Surgery to teach surgical trainees the basics of the innovation process, focusing on surgeon-driven problem identification, product design, prototype fabrication, and initial steps in the commercialization process. Participating surgical residents and graduate students attend monthly workshops taught by medical, engineering, and medical technology (MedTech) industry faculty. Participants collaborate in teams to develop a novel device, fabricate a protype, and pitch their product to a panel of judges. OUTCOMES: From academic years 2015-2016 to 2017-2018, 49 trainees, including 41 surgical residents, participated in SPIN. Across this period, 13 teams identified an unmet need, ideated a solution, and designed and pitched a novel device. Ten teams fabricated prototypes. The 22 SPIN participants who responded to both pre- and postcourse surveys reported significant increases in confidence in generating problem statements, computer-aided design, fabrication of a prototype, and initial commercialization steps (product pitching and business planning). NEXT STEPS: Incorporating innovation education and design thinking into clinical training will prove essential in preparing future physicians to be lifelong problem finders and solvers. The authors plan to expand SPIN to additional clinical specialties, as well as to assess its impact in fostering future innovation and collaboration among program participants.


Assuntos
Currículo , Educação de Pós-Graduação em Medicina/métodos , Invenções , Aprendizagem Baseada em Problemas/métodos , Cirurgiões/educação , Difusão de Inovações , Humanos , Internato e Residência/métodos , Avaliação das Necessidades
8.
J Digit Imaging ; 32(4): 618-624, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30963339

RESUMO

The aim was to determine whether an artificial intelligence (AI)-based, computer-aided detection (CAD) software can be used to reduce false positive per image (FPPI) on mammograms as compared to an FDA-approved conventional CAD. A retrospective study was performed on a set of 250 full-field digital mammograms between January 1, 2013, and March 31, 2013, and the number of marked regions of interest of two different systems was compared for sensitivity and specificity in cancer detection. The count of false-positive marks per image (FPPI) of the two systems was also evaluated as well as the number of cases that were completely mark-free. All results showed statistically significant reductions in false marks with the use of AI-CAD vs CAD (confidence interval = 95%) with no reduction in sensitivity. There is an overall 69% reduction in FPPI using the AI-based CAD as compared to CAD, consisting of 83% reduction in FPPI for calcifications and 56% reduction for masses. Almost half (48%) of cases showed no AI-CAD markings while only 17% show no conventional CAD marks. There was a significant reduction in FPPI with AI-CAD as compared to CAD for both masses and calcifications at all tissue densities. A 69% decrease in FPPI could result in a 17% decrease in radiologist reading time per case based on prior literature of CAD reading times. Additionally, decreasing false-positive recalls in screening mammography has many direct social and economic benefits.


Assuntos
Inteligência Artificial , Neoplasias da Mama/diagnóstico por imagem , Mamografia/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Mama/diagnóstico por imagem , Reações Falso-Positivas , Feminino , Humanos , Estudos Retrospectivos , Sensibilidade e Especificidade
9.
J Am Assoc Nurse Pract ; 25(9): 488-94, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24170653

RESUMO

PURPOSE: The majority of patients with type 2 diabetes mellitus (T2DM) have multiple risk factors for cardiovascular disease (CVD). Low-density lipoprotein cholesterol (LDL-C) is a key therapeutic target to reduce CVD risk. This article reviews therapeutic strategies that nurse practitioners (NPs) may use in the management of patients with T2DM requiring lipid management. DATA SOURCES: The evidence used in developing this review included evidence-based reviews, clinical trials, guidelines, and consensus statements. Relevant publications were identified through a search of the literature using PubMed and other search engines. CONCLUSIONS: Lowering LDL-C levels may reduce CVD risk, but achieving goals can be challenging. Lifestyle modifications (including diet, exercise, and smoking cessation) are key components of lipid management and reduction of CVD risk. Statins can be effective to reduce lipids. However, patients may not achieve lipid goals with monotherapy or may experience intolerable adverse effects. Alternative statins or statins along with other lipid-lowering agents remain good options. IMPLICATIONS FOR PRACTICE: Achieving LDL-C goals requires a comprehensive treatment plan that incorporates lifestyle and pharmacologic interventions. Patient commitment in setting goals and self-management is essential. NPs can play an important role in educating patients as well as prescribing appropriate treatments.


Assuntos
LDL-Colesterol/sangue , Diabetes Mellitus Tipo 2/terapia , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Estilo de Vida , Profissionais de Enfermagem , Papel do Profissional de Enfermagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA