Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 293(22): 8588-8599, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669813

RESUMO

The acceleration of myocardial relaxation produced by ß-adrenoreceptor stimulation is mediated in part by protein kinase A (PKA)-mediated phosphorylation of cardiac troponin-I (cTnI), which decreases myofibrillar Ca2+ sensitivity. Previous evidence suggests that phosphorylation of both Ser-23 and Ser-24 in cTnI is required for this Ca2+ desensitization. PKA-mediated phosphorylation also partially protects cTnI from proteolysis by calpain. Here we report that protein kinase D (PKD) phosphorylates only one serine of cTnI Ser-23/24. To explore the functional consequences of this monophosphorylation, we examined the Ca2+ sensitivity of force production and susceptibility of cTnI to calpain-mediated proteolysis when Ser-23/24 of cTnI in mouse cardiac myofibrils was nonphosphorylated, mono-phosphorylated, or bisphosphorylated (using sequential incubations in λ-phosphatase, PKD, and PKA, respectively). Phos-tag gels, Western blotting, and high-resolution MS revealed that PKD produced >90% monophosphorylation of cTnI, primarily at Ser-24, whereas PKA led to cTnI bisphosphorylation exclusively. PKD markedly decreased the Ca2+ sensitivity of force production in detergent-permeabilized ventricular trabeculae, whereas subsequent incubation with PKA produced only a small further fall of Ca2+ sensitivity. Unlike PKD, PKA also substantially phosphorylated myosin-binding protein-C and significantly accelerated cross-bridge kinetics (ktr). After phosphorylation by PKD or PKA, cTnI in isolated myofibrils was partially protected from calpain-mediated degradation. We conclude that cTnI monophosphorylation at Ser-23/24 decreases myofibrillar Ca2+ sensitivity and partially protects cTnI from calpain-induced proteolysis. In healthy cardiomyocytes, the basal monophosphorylation of cTnI may help tonically regulate myofibrillar Ca2+ sensitivity.


Assuntos
Cálcio/metabolismo , Calpaína/farmacologia , Miócitos Cardíacos/fisiologia , Miofibrilas/fisiologia , Proteólise/efeitos dos fármacos , Serina/metabolismo , Troponina I/metabolismo , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miofibrilas/efeitos dos fármacos , Fosforilação , Proteína Quinase C/metabolismo , Ratos , Serina/química
2.
J Muscle Res Cell Motil ; 33(1): 53-60, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22089698

RESUMO

It is now generally accepted that phosphorylation of cMyBP-C is critically important in maintaining normal cardiac function. Although much of the work to date on phospho-regulation of cMyBP-C has focused on the role of protein kinase A (PKA, also known as cAMP-dependent protein kinase), recent evidence suggests that a number of non-PKA serine/threonine kinases, such as Ca(2+)/calmodulin-dependent protein kinase II, protein kinase C, protein kinase D and the 90-kDa ribosomal S6 kinase are also capable of targeting this key regulatory sarcomeric protein. This article reviews such evidence and proposes a hypothetical role for some of the pertinent signalling pathways in phospho-regulation of cMyBP-C in the setting of heart failure.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas de Transporte/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais , Animais , Sítios de Ligação , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Miofibrilas/metabolismo , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Especificidade por Substrato
3.
J Biol Chem ; 286(7): 5300-10, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21148481

RESUMO

In myocardium, the 90-kDa ribosomal S6 kinase (RSK) is activated by diverse stimuli and regulates the sarcolemmal Na(+)/H(+) exchanger through direct phosphorylation. Only limited information is available on other cardiac RSK substrates and functions. We evaluated cardiac myosin-binding protein C (cMyBP-C), a sarcomeric regulatory phosphoprotein, as a potential RSK substrate. In rat ventricular myocytes, RSK activation by endothelin 1 (ET1) increased cMyBP-C phosphorylation at Ser(282), which was inhibited by the selective RSK inhibitor D1870. Neither ET1 nor D1870 affected the phosphorylation status of Ser(273) or Ser(302), cMyBP-C residues additionally targeted by cAMP-dependent protein kinase (PKA). Complementary genetic gain- and loss-of-function experiments, through the adenoviral expression of wild-type or kinase-inactive RSK isoforms, confirmed RSK-mediated phosphorylation of cMyBP-C at Ser(282). Kinase assays utilizing as substrate wild-type or mutated (S273A, S282A, S302A) recombinant cMyBP-C fragments revealed direct and selective Ser(282) phosphorylation by RSK. Immunolabeling with a Ser(P)(282) antibody and confocal fluorescence microscopy showed RSK-mediated phosphorylation of cMyBP-C across the C-zones of sarcomeric A-bands. In chemically permeabilized mouse ventricular muscles, active RSK again induced selective Ser(282) phosphorylation in cMyBP-C, accompanied by significant reduction in Ca(2+) sensitivity of force development and significant acceleration of cross-bridge cycle kinetics, independently of troponin I phosphorylation at Ser(22)/Ser(23). The magnitudes of these RSK-induced changes were comparable with those induced by PKA, which phosphorylated cMyBP-C additionally at Ser(273) and Ser(302). We conclude that Ser(282) in cMyBP-C is a novel cardiac RSK substrate and its selective phosphorylation appears to regulate cardiac myofilament function.


Assuntos
Citoesqueleto de Actina/enzimologia , Proteínas de Transporte/metabolismo , Ventrículos do Coração/enzimologia , Miócitos Cardíacos/enzimologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sarcômeros/enzimologia , Citoesqueleto de Actina/genética , Animais , Proteínas de Transporte/genética , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ventrículos do Coração/citologia , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Fosforilação/fisiologia , Ratos , Proteínas Quinases S6 Ribossômicas 90-kDa/genética
4.
Circulation ; 121(8): 979-88, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20159832

RESUMO

BACKGROUND: In ventricular dilatation or hypertrophy, an elevated end-diastolic pressure is often assumed to be secondary to increased myocardial stiffness, but stiffness is rarely measured in vivo because of difficulty. We measured in vitro passive stiffness of volume- or pressure-overloaded myocardium mainly from congenital heart disease. METHODS AND RESULTS: Endocardial ventricular biopsies were obtained at open heart surgery (n=61; pressure overload, 36; volume-overload, 19; dilated cardiomyopathy, 4; normal donors, 2). In vitro passive force-extension curves and the stiffness modulus were measured in skinned tissue: muscle strips, strips with myofilaments extracted (mainly extracellular matrix), and myocytes. Collagen content (n=38) and titin isoforms (n=16) were determined. End-diastolic pressure was measured at cardiac catheterization (n=14). Pressure-overloaded tissue (strips, extracellular matrix, myocytes) had a 2.6- to 7.0-fold greater force and stiffness modulus than volume-overloaded tissue. Myocyte force and stiffness modulus at short stretches (0.05 resting length, L(0)) was pressure-overloaded >normal approximately volume-overloaded>dilated cardiomyopathy. Titin N2B:N2BA isoform ratio varied little between conditions. The extracellular matrix contributed more to force at 0.05 L(0) in pressure-overloaded (35.1%) and volume-overloaded (17.4%) strips than normal myocardium. Stiffness modulus increased with collagen content in pressure-overloaded but not volume-overloaded strips. In vitro stiffness modulus at 0.05 L(0) was a good predictor of in vivo end-diastolic pressure for pressure-overloaded but not volume-overloaded ventricles and estimated normal end-diastolic pressure as 5 to 7 mm Hg. CONCLUSIONS: An elevated end-diastolic pressure in pressure-overloaded, but not volume-overloaded, ventricles was related to increased myocardial stiffness. The greater stiffness of pressure-overloaded compared with volume-overloaded myocardium was due to the higher stiffness of both the extracellular matrix and myocytes. The transition from normal to very-low stiffness myocytes may mark irreversible dilatation.


Assuntos
Diástole/fisiologia , Elasticidade/fisiologia , Cardiopatias/congênito , Cardiopatias/fisiopatologia , Coração/fisiopatologia , Adolescente , Adulto , Idoso , Biópsia , Criança , Pré-Escolar , Colágeno/metabolismo , Conectina , Dilatação Patológica/metabolismo , Dilatação Patológica/fisiopatologia , Matriz Extracelular/metabolismo , Feminino , Cardiopatias/metabolismo , Humanos , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Lactente , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Proteínas Quinases/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Adulto Jovem
5.
J Biol Chem ; 285(8): 5674-82, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20018870

RESUMO

Protein kinase D (PKD), a serine/threonine kinase with emerging cardiovascular functions, phosphorylates cardiac troponin I (cTnI) at Ser(22)/Ser(23), reduces myofilament Ca(2+) sensitivity, and accelerates cross-bridge cycle kinetics. Whether PKD regulates cardiac myofilament function entirely through cTnI phosphorylation at Ser(22)/Ser(23) remains to be established. To determine the role of cTnI phosphorylation at Ser(22)/Ser(23) in PKD-mediated regulation of cardiac myofilament function, we used transgenic mice that express cTnI in which Ser(22)/Ser(23) are substituted by nonphosphorylatable Ala (cTnI-Ala(2)). In skinned myocardium from wild-type (WT) mice, PKD increased cTnI phosphorylation at Ser(22)/Ser(23) and decreased the Ca(2+) sensitivity of force. In contrast, PKD had no effect on the Ca(2+) sensitivity of force in myocardium from cTnI-Ala(2) mice, in which Ser(22)/Ser(23) were unavailable for phosphorylation. Surprisingly, PKD accelerated cross-bridge cycle kinetics similarly in myocardium from WT and cTnI-Ala(2) mice. Because cardiac myosin-binding protein C (cMyBP-C) phosphorylation underlies cAMP-dependent protein kinase (PKA)-mediated acceleration of cross-bridge cycle kinetics, we explored whether PKD phosphorylates cMyBP-C at its PKA sites, using recombinant C1C2 fragments with or without site-specific Ser/Ala substitutions. Kinase assays confirmed that PKA phosphorylates Ser(273), Ser(282), and Ser(302), and revealed that PKD phosphorylates only Ser(302). Furthermore, PKD phosphorylated Ser(302) selectively and to a similar extent in native cMyBP-C of skinned myocardium from WT and cTnI-Ala(2) mice, and this phosphorylation occurred throughout the C-zones of sarcomeric A-bands. In conclusion, PKD reduces myofilament Ca(2+) sensitivity through cTnI phosphorylation at Ser(22)/Ser(23) but accelerates cross-bridge cycle kinetics by a distinct mechanism. PKD phosphorylates cMyBP-C at Ser(302), which may mediate the latter effect.


Assuntos
Citoesqueleto de Actina/metabolismo , Cálcio/metabolismo , Proteína Quinase C/metabolismo , Sarcômeros/enzimologia , Citoesqueleto de Actina/genética , Substituição de Aminoácidos , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Cinética , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Fosforilação/fisiologia , Proteína Quinase C/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sarcômeros/genética , Troponina I/genética , Troponina I/metabolismo
6.
Curr Opin Pharmacol ; 9(2): 220-6, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19492439

RESUMO

Elective temporary cardiac arrest (cardioplegia) is often required during cardiac surgery. In the 1970 s, the development of hyperkalaemic cardioplegic solutions revolutionised cardiac surgery by offering effective chemically-induced cardiac arrest and myocardial protection during global ischaemia. Despite remaining the most widely-used cardioplegic technique, hyperkalaemia can have detrimental effects due to the Na and Ca loading of the cardiac cell induced by depolarisation of the cell membrane. Efforts over the last two decades to establish better cardioplegic agents have mainly remained limited to animal experiments. The failure of these approaches to progress to clinical trials may be due to a lack of clear criteria that a cardioplegic agent should meet at a cellular level and, more importantly, at a system level. In this review we attempt to define the criteria for the optimal cardioplegic agent. We also assess the suitability and clinical potential of previously-studied cardioplegic agents and suggest cellular targets, particularly those involved in cardiac excitation-contraction coupling, that may prove to be attractive options for the development of new cardioplegic drugs. Finally, we propose a multicellular target approach using a combination of pharmacological agents in order to offer better cardioplegic solutions.


Assuntos
Soluções Cardioplégicas/efeitos adversos , Soluções Cardioplégicas/farmacologia , Parada Cardíaca Induzida/normas , Animais , Agonistas dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Sistemas de Liberação de Medicamentos , Parada Cardíaca Induzida/métodos , Humanos , Canais de Potássio/efeitos dos fármacos , Propanolaminas/farmacologia , Propanolaminas/uso terapêutico
7.
Cardiovasc Res ; 82(1): 67-76, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19201758

RESUMO

AIMS: Sepsis-associated cardiac dysfunction represents an intrinsic impairment of cardiomyocyte function due in part to a decrease in myofilament Ca(2+) sensitivity associated with a sustained increase in cardiac troponin I (cTnI) phosphorylation at Ser23/24. Dephosphorylation of cTnI is under regulatory control. Thus, muscarinic and adenosine A(1)-receptor agonists antagonize beta-adrenergic stimulation via activation of protein phosphatase 2A (PP2A). The aim of this study was to determine whether modulation of PP2A and thus cTnI phosphorylation could improve sepsis-induced contractile dysfunction. METHODS AND RESULTS: Cardiomyocytes were isolated from control or septic mice 16-18 h after an injection of vehicle or lipopolysaccharide (LPS; 9 mg/kg ip) respectively. Protein expression and phosphatase activity were determined in homogenates of control and septic hearts. Our data showed that LPS significantly increased cTnI phosphorylation at Ser23/24 in cardiomyocytes and reduced contraction amplitude without affecting Ca(2+)-transients. Treatment of cardiomyocytes with the A(1) agonist cyclopentyladenosine (CPA) or the protein kinase A inhibitor H89 significantly attenuated the LPS-induced contractile dysfunction without effect on Ca(2+)-transients. Co-treatment with CPA and H89 completely reversed the contractile dysfunction. Increased cTnI phosphorylation in septic hearts was associated with a significant reduction in the protein expression of both the catalytic and regulatory subunits (B56 alpha) of PP2A and a decrease in PP2A activity. CPA treatment of septic hearts increased PP2A activity. An increase in the protein expression of demethylated PP2A and a decrease in the PP2A-methyltransferase (PPMT; the methyltransferase that catalyses this reaction) were also observed. CONCLUSION: These data support the hypothesis that sustained cTnI phosphorylation underlies the contractile dysfunction seen in sepsis.


Assuntos
Endotoxemia/enzimologia , Contração Miocárdica , Miócitos Cardíacos/enzimologia , Proteína Fosfatase 2/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A1 de Adenosina , Animais , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Endotoxemia/fisiopatologia , Isoquinolinas/farmacologia , Lipopolissacarídeos , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Ácido Okadáico/farmacologia , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Metiltransferases/metabolismo , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/genética , Proteína Fosfatase 2C , Processamento de Proteína Pós-Traducional , Receptor A1 de Adenosina/metabolismo , Sulfonamidas/farmacologia , Fatores de Tempo , Troponina I/metabolismo
8.
Circ Res ; 100(6): 864-73, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17322173

RESUMO

Protein kinase D (PKD) is a serine/threonine kinase with emerging myocardial functions; in skinned adult rat ventricular myocytes (ARVMs), recombinant PKD catalytic domain phosphorylates cardiac troponin I at Ser22/Ser23 and reduces myofilament Ca(2+) sensitivity. We used adenoviral gene transfer to determine the effects of full-length PKD on protein phosphorylation, sarcomere shortening and [Ca(2+)](i) transients in intact ARVMs. In myocytes transduced to express wild-type PKD, the heterologously expressed enzyme was activated by endothelin 1 (ET1) (5 nmol/L), as reflected by PKD phosphorylation at Ser744/Ser748 (PKC phosphorylation sites) and Ser916 (autophosphorylation site). The ET1-induced increase in cellular PKD activity was accompanied by increased cardiac troponin I phosphorylation at Ser22/Ser23; this measured approximately 60% of that induced by isoproterenol (10 nmol/L), which activates cAMP-dependent protein kinase (PKA) but not PKD. Phosphorylation of other PKA targets, such as phospholamban at Ser16, phospholemman at Ser68 and cardiac myosin-binding protein C at Ser282, was unaltered. Furthermore, heterologous PKD expression had no effect on isoproterenol-induced phosphorylation of these proteins, or on isoproterenol-induced increases in sarcomere shortening and relaxation rate and [Ca(2+)](i) transient amplitude. In contrast, heterologous PKD expression suppressed the positive inotropic effect of ET1 seen in control cells, without altering ET1-induced increases in relaxation rate and [Ca(2+)](i) transient amplitude. Complementary experiments in "skinned" myocytes confirmed reduced myofilament Ca(2+) sensitivity by ET1-induced activation of heterologously expressed PKD. We conclude that increased myocardial PKD activity induces cardiac troponin I phosphorylation at Ser22/Ser23 and reduces myofilament Ca(2+) sensitivity, suggesting that altered PKD activity in disease may impact on contractile function.


Assuntos
Citoesqueleto de Actina/metabolismo , Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Proteína Quinase C/fisiologia , Troponina I/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Cálcio/farmacologia , Células Cultivadas , Endotelina-1/farmacologia , Técnicas de Transferência de Genes , Genes Reporter , Proteínas de Fluorescência Verde/genética , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Isoproterenol/farmacologia , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteína Quinase C/efeitos dos fármacos , Proteína Quinase C/genética , Ratos , Sarcômeros/efeitos dos fármacos , Sarcômeros/fisiologia
9.
J Biol Chem ; 281(31): 21827-21836, 2006 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16754666

RESUMO

Here we demonstrate that type I protein kinase A is redoxactive, forming an interprotein disulfide bond between its two regulatory RI subunits in response to cellular hydrogen peroxide. This oxidative disulfide formation causes a subcellular translocation and activation of the kinase, resulting in phosphorylation of established substrate proteins. The translocation is mediated at least in part by the oxidized form of the kinase having an enhanced affinity for alpha-myosin heavy chain, which serves as a protein kinase A (PKA) anchor protein and localizes the PKA to its myofilament substrates troponin I and myosin binding protein C. The functional consequence of these events in cardiac myocytes is that hydrogen peroxide increases contractility independently of beta-adrenergic stimulation and elevations of cAMP. The oxidant-induced phosphorylation of substrate proteins and increased contractility is blocked by the kinase inhibitor H89, indicating that these events involve PKA activation. In essence, type I PKA contains protein thiols that operate as redox sensors, and their oxidation by hydrogen peroxide directly activates the kinase.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Oxidantes/farmacologia , Animais , Células Cultivadas , Dissulfetos , Ativação Enzimática/efeitos dos fármacos , Coração , Peróxido de Hidrogênio/farmacologia , Técnicas In Vitro , Masculino , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/citologia , Oxirredução , Fosforilação , Subunidades Proteicas , Transporte Proteico , Ratos , Ratos Wistar , Miosinas Ventriculares
10.
FASEB J ; 19(9): 1137-9, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15855227

RESUMO

Gram negative endotoxemia is associated with an intrinsic impairment of cardiomyocyte contraction, in part due to a reduction in myofilament Ca2+ responsiveness. Endotoxemic rat hearts show increased cardiac troponin I (cTnI) phosphorylation at serines 23 and 24, residues required for the protein kinase A (PKA)-dependent reduction of myofilament Ca2+ sensitivity after beta-adrenoceptor stimulation. To investigate the functional significance of increased TnI phosphorylation in endotoxemia, we studied the contractile effects of systemic bacterial lipopolysaccharide (LPS) treatment in transgenic mice (TG) with cardiac-specific replacement of cTnI by slow skeletal TnI (ssTnI, which lacks the PKA phosphorylation sites) and matched nontransgenic littermates (NTG) on a CD1 background. In wild-type CD1 mice treated with LPS (6 mg/kg ip), after 16-18 h there was a significant reduction in the maximum rates of left ventricular pressure development and pressure decline in isolated Langendorff-perfused hearts compared with saline-treated controls and a decrease in isolated myocyte unloaded sarcomere shortening from 6.1 +/- 0.2 to 3.9 +/- 0.2% (1 Hz, 32 degrees C, P<0.05). Similarly, in NTG myocytes, endotoxemia reduced myocyte shortening by 42% from 6.7 +/- 0.2 to 3.9 +/- 0.1% (P<0.05) with no change in intracellular Ca2+ transients. However, in the TG group, LPS reduced myocyte shortening by only 13% from 7.5 +/- 0.2 to 6.5 +/- 0.2% (P<0.05). LPS treatment significantly reduced the positive inotropic effect of isoproterenol in NTG myocytes but not in TG myocytes, even though isoproterenol-induced increases in Ca2+ transient amplitude were similar in both groups. Only LPS-treated NTG hearts showed a significant increase in cTnI phosphorylation. Investigation of the sarcomere shortening-Ca2+ relationship in Triton-skinned cardiomyocytes revealed a significant reduction in myofilament Ca2+ sensitivity after LPS treatment in NTG myocytes, an effect that was substantially attenuated in TG myocytes. In conclusion, the replacement of cTnI with ssTnI in the heart provides significant protection against endotoxemia-induced cardiac contractile dysfunction, most probably by preserving myofilament Ca2+ responsiveness due to prevention of phosphorylation of TnI at PKA-sensitive sites.


Assuntos
Endotoxemia/fisiopatologia , Lipopolissacarídeos/toxicidade , Contração Miocárdica/efeitos dos fármacos , Troponina I/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Diástole , Isoproterenol/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/fisiologia , Fosforilação
11.
Circ Res ; 95(11): 1091-9, 2004 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-15514163

RESUMO

Protein kinase D (PKD) is a serine kinase whose myocardial substrates are unknown. Yeast 2-hybrid screening of a human cardiac library, using the PKD catalytic domain as bait, identified cardiac troponin I (cTnI), myosin-binding protein C (cMyBP-C), and telethonin as PKD-interacting proteins. In vitro phosphorylation assays revealed PKD-mediated phosphorylation of cTnI, cMyBP-C, and telethonin, as well as myomesin. Peptide mass fingerprint analysis of cTnI by liquid chromatography-coupled mass spectrometry indicated PKD-mediated phosphorylation of a peptide containing Ser22 and Ser23, the protein kinase A (PKA) targets. Ser22 and Ser23 were replaced by Ala, either singly (Ser22Ala or Ser23Ala) or jointly (Ser22/23Ala), and the troponin complex reconstituted in vitro, using wild-type or mutated cTnI together with wild-type cardiac troponin C and troponin T. PKD-mediated cTnI phosphorylation was reduced in complexes containing Ser22Ala or Ser23Ala cTnI and completely abolished in the complex containing Ser22/23Ala cTnI, indicating that Ser22 and Ser23 are both targeted by PKD. Furthermore, troponin complex containing wild-type cTnI was phosphorylated with similar kinetics and stoichiometry (approximately 2 mol phosphate/mol cTnI) by both PKD and PKA. To determine the functional impact of PKD-mediated phosphorylation, Ca2+ sensitivity of tension development was studied in a rat skinned ventricular myocyte preparation. PKD-mediated phosphorylation did not affect maximal tension but produced a significant rightward shift of the tension-pCa relationship, indicating reduced myofilament Ca2+ sensitivity. At submaximal Ca2+ activation, PKD-mediated phosphorylation also accelerated isometric crossbridge cycling kinetics. Our data suggest that PKD is a novel mediator of cTnI phosphorylation at the PKA sites and may contribute to the regulation of myofilament function.


Assuntos
Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Troponina I/metabolismo , Citoesqueleto de Actina/metabolismo , Adulto , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sinalização do Cálcio , Proteínas de Transporte/metabolismo , Conectina , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , DNA Complementar/genética , Humanos , Contração Isométrica , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteínas Musculares/metabolismo , Mutagênese Sítio-Dirigida , Miócitos Cardíacos/metabolismo , Fosforilação , Fosfosserina/análise , Proteína Quinase C/genética , Ratos , Ratos Wistar , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Troponina I/química , Troponina I/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA