Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pflugers Arch ; 452(6): 744-55, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16688465

RESUMO

The purpose of this study was to investigate whether creatine (Cr) supplementation during 12 weeks of phasic high-frequency voluntary wheel running would result in a faster myosin heavy chain (MHC) isoform profile in the rat mixed fast-twitch plantaris and alter its corresponding isometric contractile properties. The fast-twitch extensor digitorum longus and medial gastrocnemius and slow-twitch soleus were also studied. Forty weanling Sprague-Dawley male rats were assigned to one of four groups: creatine-sedentary (Cre-Sed); creatine-voluntary running (Cre-Run); control-sedentary (Con-Sed); control-voluntary running (Con-Run). Daily running distance was similar between Cre-Run and Con-Run. Average daily Cr ingestion was also similar being 2.4+/-0.17 and 3.0+/-0.14 g/kg in Cre-Sed and Cre-Run, respectively. Total creatine (TCr) content was elevated (P<0.03) in the plantaris of Cre-Run [211.4+/-16.9 mmol/kg dry weight (dw)], compared with Con-Run (175.1+/-5.69). In the plantaris, MHCIIb was 13% greater (P<0.00001) in Cre-Run compared with Con-Run, while MHCIId/x and MHCIIa were lower in Cre-Run by 7 and 6% (P<0.0002), respectively. No differences were observed in twitch force, time-to-peak tension, half-rise time or half-fall time. Greater tetanic force production (P<0.05) in Cre-Sed compared with Con-Sed corresponded to a 12% increase in MHCIId/x (P<0.0001) and a 12% decrease in MHCIIb (P<0.0006). The fatigue index of the plantaris at 10 s (FI(10s)) was reduced only after running (Cre-Run vs Con-Run), while in all other muscles the FI(10s) was lower only in the Cre-Sed group. In conclusion, Cr supplementation had differential effects on MHC isoform content and fatigability that depended on the level of contractile activity. Cr feeding combined with running exercise resulted in a faster MHC-based phenotype in the rat plantaris but the impact on associated isometric contractile properties was minimal.


Assuntos
Creatina/farmacologia , Contração Isométrica/efeitos dos fármacos , Músculo Esquelético/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Corrida/fisiologia , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Membro Posterior/fisiologia , Masculino , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Fadiga Muscular/efeitos dos fármacos , Fadiga Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Tamanho do Órgão/fisiologia , Fenótipo , Fosforilação , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA