Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Public Health Nutr ; 26(8): 1686-1695, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36793234

RESUMO

OBJECTIVE: Household air pollution (HAP) is a widespread environmental exposure worldwide. While several cleaner fuel interventions have been implemented to reduce personal exposures to HAP, it is unclear if cooking with cleaner fuels also affects the choice of meals and dietary intake. DESIGN: Individually randomised, open-label controlled trial of a HAP intervention. We aimed to determine the effect of a HAP intervention on dietary and Na intake. Intervention participants received a liquefied petroleum gas (LPG) stove, continuous fuel delivery and behavioural messaging during 1 year whereas control participants continued with usual cooking practices that involved the use of biomass-burning stoves. Dietary outcomes included energy, energy-adjusted macronutrients and Na intake at baseline, 6 months and 12 months post-randomisation using 24-h dietary recalls and 24-h urine. We used t-tests to estimate differences between arms in the post-randomisation period. SETTING: Rural settings in Puno, Peru. PARTICIPANTS: One hundred women aged 25-64 years. RESULTS: At baseline, control and intervention participants were similar in age (47·4 v. 49·5 years) and had similar daily energy (8894·3 kJ v. 8295·5 kJ), carbohydrate (370·8 g v. 373·3 g) and Na intake (4·9 g v. 4·8 g). One year after randomisation, we did not find differences in average energy intake (9292·4 kJ v. 8788·3 kJ; P = 0·22) or Na intake (4·5 g v. 4·6 g; P = 0·79) between control and intervention participants. CONCLUSIONS: Our HAP intervention consisting of an LPG stove, continuous fuel distribution and behavioural messaging did not affect dietary and Na intake in rural Peru.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluição do Ar , Petróleo , Sódio na Dieta , Adulto , Feminino , Humanos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise , Peru , Culinária , População Rural
2.
Energy Sustain Dev ; 73: 13-22, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36798733

RESUMO

Background: Existing efforts to promote cleaner fuels have not achieved exclusive use. We investigated whether receiving 12 months of free liquefied petroleum gas (LPG) and behavioral support could motivate continued purchase and use. Methods: The Cardiopulmonary outcomes and Household Air Pollution (CHAP) trial enrolled 180 women. Half were randomly assigned to an intervention group, which included free LPG delivered in months 1-12 followed by a post-intervention period in which they no longer received free fuel (months 13-24). For the purposes of comparison, we also include months 1-12 of data from control participants. We tracked stove use with temperature monitors, surveys, and observations, and conducted in-depth interviews with 19 participants from the intervention group at the end of their post-intervention period. Results: Participants from the intervention group used their LPG stove for 85.4 % of monitored days and 63.2 % of cooking minutes during the post-intervention months (13-24) when they were not receiving free fuel from the trial. They used a traditional stove (fogón) on 45.1 % of days post-intervention, which is significantly lower than fogón use by control participants during the intervention period (72.2 % of days). In months 13-24 post-intervention, participants from the intervention group purchased on average 12.3 kg and spent 34.1 soles (10.3 USD) per month on LPG. Continued LPG use was higher among participants who said they could afford two tanks of LPG per month, did not cook for animals, and removed their traditional stove. Women described that becoming accustomed to LPG, support and training from the project, consistent LPG supply, choice between LPG providers, and access to delivery services facilitated sustained LPG use. However, high cost was a major barrier to exclusive use. Conclusion: A 12-month period of intensive LPG support achieved a high level of sustained LPG use post-intervention, but other strategies are needed to sustain exclusive use.

3.
Environ Health Perspect ; 130(5): 57007, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35549716

RESUMO

BACKGROUND: Household air pollution (HAP) from biomass fuel combustion remains a leading environmental risk factor for morbidity worldwide. OBJECTIVE: Measure the effect of liquefied petroleum gas (LPG) interventions on HAP exposures in Puno, Peru. METHODS: We conducted a 1-y randomized controlled trial followed by a 1-y pragmatic crossover trial in 180 women age 25-64 y. During the first year, intervention participants received a free LPG stove, continuous fuel delivery, and regular behavioral messaging, whereas controls continued their biomass cooking practices. During the second year, control participants received a free LPG stove, regular behavioral messaging, and vouchers to obtain LPG tanks from a nearby distributor, whereas fuel distribution stopped for intervention participants. We collected 48-h kitchen area concentrations and personal exposures to fine particulate matter (PM) with aerodynamic diameter ≤2.5µm (PM2.5), black carbon (BC), and carbon monoxide (CO) at baseline and 3-, 6-, 12-, 18-, and 24-months post randomization. RESULTS: Baseline mean [±standard deviation (SD)] PM2.5 (kitchen area concentrations 1,220±1,010 vs. 1,190±880 µg/m3; personal exposure 126±214 vs. 104±100 µg/m3), CO (kitchen 53±49 vs. 50±41 ppm; personal 7±8 vs. 7±8 ppm), and BC (kitchen 180±120 vs. 210±150 µg/m3; personal 19±16 vs. 21±22 µg/m3) were similar between control and intervention participants. Intervention participants had consistently lower mean (±SD) concentrations at the 12-month visit for kitchen (41±59 µg/m3, 3±6 µg/m3, and 8±13 ppm) and personal exposures (26±34 µg/m3, 2±3 µg/m3, and 3±4 ppm) to PM2.5, BC, and CO when compared to controls during the first year. In the second year, we observed comparable HAP reductions among controls after the voucher-based intervention for LPG fuel was implemented (24-month visit PM2.5, BC, and CO kitchen mean concentrations of 34±74 µg/m3, 3±5 µg/m3, and 6±6 ppm and personal exposures of 17±15 µg/m3, 2±2 µg/m3, and 3±4 ppm, respectively), and average reductions were present among intervention participants even after free fuel distribution stopped (24-month visit PM2.5, BC, and CO kitchen mean concentrations of 561±1,251 µg/m3, 82±124 µg/m3, and 23±28 ppm and personal exposures of 35±38 µg/m3, 6±6 µg/m3, and 4±5 ppm, respectively). DISCUSSION: Both home delivery and voucher-based provision of free LPG over a 1-y period, in combination with provision of a free LPG stove and longitudinal behavioral messaging, reduced HAP to levels below 24-h World Health Organization air quality guidelines. Moreover, the effects of the intervention on HAP persisted for a year after fuel delivery stopped. Such strategies could be applied in LPG programs to reduce HAP and potentially improve health. https://doi.org/10.1289/EHP10054.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluição do Ar , Petróleo , Adulto , Poluição do Ar em Ambientes Fechados/análise , Culinária , Estudos Cross-Over , Feminino , Humanos , Pessoa de Meia-Idade , Material Particulado/análise , Peru , População Rural , Fuligem
4.
Am J Respir Crit Care Med ; 203(11): 1386-1397, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33306939

RESUMO

Rationale: Approximately 40% of people worldwide are exposed to household air pollution (HAP) from the burning of biomass fuels. Previous efforts to document health benefits of HAP mitigation have been stymied by an inability to lower emissions to target levels. Objectives: We sought to determine if a household air pollution intervention with liquefied petroleum gas (LPG) improved cardiopulmonary health outcomes in adult women living in a resource-poor setting in Peru. Methods: We conducted a randomized controlled field trial in 180 women aged 25-64 years living in rural Puno, Peru. Intervention women received an LPG stove, continuous fuel delivery for 1 year, education, and behavioral messaging, whereas control women were asked to continue their usual cooking practices. We assessed for stove use adherence using temperature loggers installed in both LPG and biomass stoves of intervention households. Measurements and Main Results: We measured blood pressure, peak expiratory flow (PEF), and respiratory symptoms using the St. George's Respiratory Questionnaire at baseline and at 3-4 visits after randomization. Intervention women used their LPG stove exclusively for 98% of days. We did not find differences in average postrandomization systolic blood pressure (intervention - control 0.7 mm Hg; 95% confidence interval, -2.1 to 3.4), diastolic blood pressure (0.3 mm Hg; -1.5 to 2.0), prebronchodilator peak expiratory flow/height2 (0.14 L/s/m2; -0.02 to 0.29), postbronchodilator peak expiratory flow/height2 (0.11 L/s/m2; -0.05 to 0.27), or St. George's Respiratory Questionnaire total score (-1.4; -3.9 to 1.2) over 1 year in intention-to-treat analysis. There were no reported harms related to the intervention. Conclusions: We did not find evidence of a difference in blood pressure, lung function, or respiratory symptoms during the year-long intervention with LPG. Clinical trial registered with www.clinicaltrials.gov (NCT02994680).


Assuntos
Poluição do Ar em Ambientes Fechados/prevenção & controle , Biomassa , Culinária/métodos , Petróleo , Saúde da População Rural/estatística & dados numéricos , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Peru
5.
Environ Int ; 145: 105932, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33032164

RESUMO

BACKGROUND: Efforts to promote clean cooking through adoption of clean-burning fuels such as liquefied petroleum gas (LPG) are often based on the idea that near-exclusive use of LPG could lead to health improvements. However, benefits beyond health, such as time savings, could be more tangible and meaningful to LPG users. OBJECTIVES: This study investigated the effect of an LPG intervention on time spent cooking and collecting fuel, using objective measures of stove temperatures combined with self-reports under conditions of near-exclusive LPG use. We also investigated the perceived value of any time savings and potential economic and quality of life implications. METHODS: We analyzed data from the Cardiopulmonary outcomes and Household Air Pollution trial in Puno, Peru, a randomized controlled trial with 180 participants assessing exposure and health impacts of an LPG stove, fuel, and behavioral intervention. Surveys conducted with 90 intervention women receiving free LPG and 90 control women cooking primarily with biomass assessed time spent cooking and collecting biomass fuel and use of time savings. Cooking time was objectively measured with temperature sensors on all stoves. Qualitative interviews explored perceptions and use of time savings in more depth. RESULTS: Intervention women spent 3.2 fewer hours cooking and 1.9 fewer hours collecting fuel per week compared to control women, but cooked on average 1.0 more meals per day. Participants perceived time saved from LPG positively, reporting more time for household chores, leisure activities, and activities with income-generating potential such as caring for animals and working in fields. DISCUSSION: This paper suggests that the benefits of LPG extend beyond health and the environment. LPG use could also lead to economic and quality of life gains, through increased time for work, rest, and consumption of hot meals, and reduced arduous biomass fuel collection.


Assuntos
Poluição do Ar em Ambientes Fechados , Petróleo , Poluição do Ar em Ambientes Fechados/análise , Culinária , Humanos , Peru , Qualidade de Vida
6.
Energy Res Soc Sci ; 662020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32742936

RESUMO

Reducing the burden of household air pollution requires that cleaner fuels such as liquefied petroleum gas (LPG) be used nearly exclusively. However, exclusive adoption has been challenging in low- and middle-income countries. Previous studies have found that economic, social, and cultural barriers often impede adoption. We conducted in-depth qualitative interviews with 22 participants in a research trial where LPG was provided for free in Puno, Peru. We aimed to determine whether social and cultural barriers to LPG use persisted when monetary costs to the household were removed, and what factors influenced exclusive adoption of LPG in a cost-free context. Facilitators of LPG use included: support from study staff, family support, time savings, previous experience with LPG, stove design, ability to use existing pots, smoke reductions, desire for cleanliness, removal of traditional stoves, and perceptions of luck. Barriers to LPG use included: fears of LPG, problems with LPG brands, delays in obtaining LPG refills, social pressure, perceived incompatibility of traditional dishes, perceived inability to use clay pots, separate kitchens for LPG and traditional stoves, designated pots for use on the traditional stove, and lack of heat. However, these barriers did not prevent participants from using LPG nearly exclusively. Results suggest that social and cultural barriers to exclusive LPG use can be overcome when LPG stoves and fuel are provided for free and supplemented with behavioral support. Governments should evaluate the economic feasibility and sustainability of LPG subsidization, considering the potential benefits of exclusive LPG use.

7.
Energy Sustain Dev ; 58: 150-157, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33442225

RESUMO

Reducing the burden of household air pollution could be achieved with exclusive adoption of cleaner fuels such as liquefied petroleum gas (LPG). However, we lack understanding of how much LPG is required to support exclusive use and how household characteristics affect this quantity. This paper used data from 90 participants in the Cardiopulmonary outcomes and Household Air Pollution (CHAP) trial in Puno, Peru who received free LPG deliveries for one year. Households with a mean of four members that cooked nearly exclusively (>98%) with LPG used an average of 19.1 kg (95% CI 18.5 to 19.6) of LPG per month for tasks similar to those done with the traditional biomass stove. LPG use per month was 0.5 kg higher for each additional pig or dog owned (p=0.003), 0.7 kg higher for each additional household member (p<0.001), 0.3 kg higher for households in the second-lowest compared to the lowest wealth quintile (p=0.01), and 1.1 kg higher if the household had previously received subsidized LPG (p=0.05). LPG use per month was 1.1 kg lower during the rainy season (p<0.001) and 1.7 kg lower during the planting season (p<0.001) compared to the cold and harvest seasons, despite the fact that LPG was not typically used for space heating. LPG use decreased by 0.05 kg per month over the course of one year after receiving the LPG stove (p=0.02). These results suggest that achieving exclusive LPG use in Puno, Peru requires that rural residents have affordable access to an average of two 10 kg LPG tanks per month. Conducting similar investigations in other countries could help policymakers set and target LPG subsidies to ensure that households have access to enough LPG to achieve exclusive LPG use and the potential health benefits.

8.
Energy Sustain Dev ; 46: 82-93, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30364502

RESUMO

INTRODUCTION: Over 80% of rural households in Peru use solid fuels as their primary source of domestic energy, which contributes to several health problems. In 2016, 6.7 million Peruvians were living in rural areas. The Fondo de Inclusión Social Energético (FISE) LPG Promotion Program, which began in 2012 and is housed under the Ministry of Energy and Mining, is a government-sponsored initiative aimed at reducing use of solid fuels by increasing access to clean fuel for cooking to poor Peruvian households. METHODS: We conducted a mixed methods study incorporating data from publicly available records and reports, a community survey of 375 households in Puno (the province with the largest number of FISE beneficiary households), and in-depth interviews with community members and key stakeholders. We used the Reach, Effectiveness - Adoption, Implementation, Maintenance (RE-AIM) framework to guide our data collection and analysis efforts. In a sample of 95 households, we also measured 48-hour area concentrations and personal exposures to fine particulate matter (PM2.5). RESULTS: The FISE LPG promotion program has achieved high geographical reach; the program is currently serving households in 100% of districts in Peru. Households with access to electricity may be participating at a higher level than households without electricity because the program is implemented primarily by electricity distributors. In a sample of 95 households, FISE beneficiaries experienced a reduction in kitchen concentrations of PM2.5; however, there were no differences in personal exposures, and both kitchen and personal exposures were above the WHO intermediate target for indoor air quality. Among the 375 households surveyed, stove stacking with biomass fuels was reported in more than 95% of both beneficiary and non-beneficiary households, with fewer than 5% reporting exclusive use. In-depth interviews suggest that the complexity of enrollment process and access to LPG distribution points may be key barriers to participating in FISE. CONCLUSION: The FISE LPG Program has achieved high reach and its targeted subsidy and surcharge-based financing structure represent a potentially feasible and sustainable model for other government programs. However, the prevalence of stove stacking among FISE beneficiaries remains high. There is a need for improved communication channels between program implementers and beneficiaries. FISE should also consider expanding the mobile LPG network and community delivery service to reduce physical barriers and indirect costs of LPG acquisition. Finally, increasing the value of LPG vouchers to completely cover one or two tanks a month, or alternatively, introducing behavior change strategies to reduce monthly LPG usage, may facilitate the transition to exclusive LPG use.

9.
Trials ; 18(1): 518, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29100550

RESUMO

BACKGROUND: Biomass fuel smoke is a leading risk factor for the burden of disease worldwide. International campaigns are promoting the widespread adoption of liquefied petroleum gas (LPG) in resource-limited settings. However, it is unclear if the introduction and use of LPG stoves, in settings where biomass fuels are used daily, reduces pollution concentration exposure, improves health outcomes, or how cultural and social barriers influence the exclusive adoption of LPG stoves. METHODS: We will conduct a randomized controlled, field intervention trial of LPG stoves and fuel distribution in rural Puno, Peru, in which we will enroll 180 female participants aged 25-64 years and follow them for 2 years. After enrollment, we will collect information on sociodemographic characteristics, household characteristics, and cooking practices. During the first year of the study, LPG stoves and fuel tanks will be delivered to the homes of 90 intervention participants. During the second year, participants in the intervention arm will keep their LPG stoves, but the gas supply will stop. Control participants will receive LPG stoves and vouchers to obtain free fuel from distributors at the beginning of the second year, but gas will not be delivered. Starting at baseline, we will collect longitudinal measurements of respiratory symptoms, pulmonary function, blood pressure, endothelial function, carotid artery intima-media thickness, 24-h dietary recalls, exhaled carbon monoxide, quality-of-life indicators, and stove-use behaviors. Environmental exposure assessments will occur six times over the 2-year follow-up period, consisting of 48-h personal exposure and kitchen concentration measurements of fine particulate matter and carbon monoxide, and 48-h kitchen concentrations of nitrogen dioxide for a subset of 100 participants. DISCUSSION: Findings from this study will allow us to better understand behavioral patterns, environmental exposures, and cardiovascular and pulmonary outcomes resulting from the adoption of LPG stoves. If this trial indicates that LPG stoves are a feasible and effective way to reduce household air pollution and improve health, it will provide important information to support widespread adoption of LPG fuel as a strategy to reduce the global burden of disease. TRIAL REGISTRATION: ClinicalTrials.gov, ID: NCT02994680 , Cardiopulmonary Outcomes and Household Air Pollution (CHAP) Trial. Registered on 28 November 2016.


Assuntos
Poluição do Ar em Ambientes Fechados/efeitos adversos , Culinária/instrumentação , Cardiopatias/etiologia , Utensílios Domésticos , Exposição por Inalação/efeitos adversos , Pneumopatias/etiologia , Petróleo/efeitos adversos , Adulto , Poluição do Ar em Ambientes Fechados/prevenção & controle , Sistema Cardiovascular/fisiopatologia , Monitoramento Ambiental/métodos , Desenho de Equipamento , Feminino , Gases , Cardiopatias/diagnóstico , Cardiopatias/fisiopatologia , Cardiopatias/prevenção & controle , Habitação , Humanos , Exposição por Inalação/prevenção & controle , Pulmão/fisiopatologia , Pneumopatias/diagnóstico , Pneumopatias/fisiopatologia , Pneumopatias/prevenção & controle , Pessoa de Meia-Idade , Peru , Projetos de Pesquisa , Fatores de Risco , Saúde da População Rural , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA