Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(14): 3750-3755, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28320941

RESUMO

Stroke is the second-leading cause of death worldwide, yet there are no drugs available to protect the brain from stroke-induced neuronal injury. Acid-sensing ion channel 1a (ASIC1a) is the primary acid sensor in mammalian brain and a key mediator of acidosis-induced neuronal damage following cerebral ischemia. Genetic ablation and selective pharmacologic inhibition of ASIC1a reduces neuronal death following ischemic stroke in rodents. Here, we demonstrate that Hi1a, a disulfide-rich spider venom peptide, is highly neuroprotective in a focal model of ischemic stroke. Nuclear magnetic resonance structural studies reveal that Hi1a comprises two homologous inhibitor cystine knot domains separated by a short, structurally well-defined linker. In contrast with known ASIC1a inhibitors, Hi1a incompletely inhibits ASIC1a activation in a pH-independent and slowly reversible manner. Whole-cell, macropatch, and single-channel electrophysiological recordings indicate that Hi1a binds to and stabilizes the closed state of the channel, thereby impeding the transition into a conducting state. Intracerebroventricular administration to rats of a single small dose of Hi1a (2 ng/kg) up to 8 h after stroke induction by occlusion of the middle cerebral artery markedly reduced infarct size, and this correlated with improved neurological and motor function, as well as with preservation of neuronal architecture. Thus, Hi1a is a powerful pharmacological tool for probing the role of ASIC1a in acid-mediated neuronal injury and various neurological disorders, and a promising lead for the development of therapeutics to protect the brain from ischemic injury.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/administração & dosagem , Canais Iônicos Sensíveis a Ácido/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Venenos de Aranha/administração & dosagem , Acidente Vascular Cerebral/tratamento farmacológico , Bloqueadores do Canal Iônico Sensível a Ácido/química , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Fármacos Neuroprotetores/farmacologia , Ratos , Venenos de Aranha/química , Venenos de Aranha/farmacologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/metabolismo
2.
ACS Chem Neurosci ; 7(12): 1647-1657, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-27611437

RESUMO

The ability to control neuronal activation is rapidly advancing our understanding of brain function and is widely viewed as having eventual therapeutic application. Although several highly effective optogenetic, optochemical genetic, and chemogenetic techniques have been developed for this purpose, new approaches may provide better solutions for addressing particular questions and would increase the number of neuronal populations that can be controlled independently. An early chemogenetic neuronal silencing method employed a glutamate receptor Cl- channel engineered for activation by 1-3 nM ivermectin. This construct has been validated in vivo. Here, we sought to develop cation-permeable ivermectin-gated receptors that were either maximally Ca2+-permeable so as to induce neuro-excitotoxic cell death or minimally Ca2+-permeable so as to depolarize neurons with minimal excitotoxic risk. Our constructs were based on the human α1 glycine receptor Cl- channel due to its high conductance, human origin, high ivermectin sensitivity (once mutated), and because pore mutations that render it permeable to Na+ alone or Na+ plus Ca2+ are well characterized. We developed a Ca2+-impermeable excitatory receptor by introducing the F207A/P-2'Δ/A-1'E/T13'V/A288G mutations and a Ca2+-permeable excitatory receptor by introducing the F207A/A-1'E/A288G mutations. The latter receptor efficiently induces cell death and strongly depolarizes neurons at nanomolar ivermectin concentrations.


Assuntos
Cátions/metabolismo , Técnicas Citológicas , Ivermectina/farmacologia , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Receptores de Glicina/metabolismo , Adenoviridae , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Relação Dose-Resposta a Droga , Vetores Genéticos , Células HEK293 , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Modelos Moleculares , Mutação , Neurônios/fisiologia , Imagem Óptica , Permeabilidade , Ratos , Receptores de Glicina/genética , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA