Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37372644

RESUMO

Firefighters are at an increased risk of cancer due to their occupational exposure to combustion byproducts, especially when those compounds penetrate the firefighter personal protective equipment (PPE) ensemble. This has led to questions about the impact of base layers (i.e., shorts vs. pants) under PPE ensembles. This study asked 23 firefighters to perform firefighting activities while wearing one of three different PPE ensembles with varying degrees of protection. Additionally, half of the firefighters unzipped their jackets after the scenario while the other half kept their jackets zipped for five additional minutes. Several volatile organic compound (VOC) and naphthalene air concentrations outside and inside of hoods, turnout jackets, and turnout pants were evaluated; biological (urinary and exhaled breath) samples were also collected. VOCs and naphthalene penetrated the three sampling areas (hoods, jackets, pants). Significant (p-value < 0.05) increases from pre- to post-fire for some metabolites of VOCs (e.g., benzene, toluene) and naphthalene were found. Firefighters wearing shorts and short sleeves absorbed higher amounts of certain compounds (p-value < 0.05), and the PPE designed with enhanced interface control features appeared to provide more protection from some compounds. These results suggest that firefighters can dermally absorb VOCs and naphthalene that penetrate the PPE ensemble.


Assuntos
Poluentes Ocupacionais do Ar , Bombeiros , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Poluentes Ocupacionais do Ar/análise , Naftalenos , Exposição Ocupacional/análise , Equipamento de Proteção Individual , Hidrocarbonetos Policíclicos Aromáticos/análise
2.
Int J Hyg Environ Health ; 248: 114095, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36508961

RESUMO

A plethora of chemicals are released into the air during combustion events, including a class of compounds called polycyclic aromatic hydrocarbons (PAHs). PAHs have been implicated in increased risk of cancer and cardiovascular disease, both of which are disease endpoints of concern in structural firefighters. Current commercially available personal protective equipment (PPE) typically worn by structural firefighters during fire responses have gaps in interfaces between the ensemble elements (e.g., hood and jacket) that allow for ingress of contaminants and dermal exposure. This pilot study aims to use silicone passive sampling to assess improvements in dermal protection afforded by a novel configuration of PPE, which incorporates a one-piece liner to eliminate gaps in two critical interfaces between pieces of gear. The study compared protection against parent and alkylated PAHs between the one-piece liner PPE and the standard configuration of PPE with traditional firefighting jacket and pants. Mannequins (n = 16) dressed in the PPE ensembles were placed in a Fireground Exposure Simulator for 10 min, and exposed to smoke from a combusting couch. Silicone passive samplers were placed underneath PPE at vulnerable locations near interfaces in standard PPE, and in the chamber air, to measure PAHs and calculate the dermal protection provided by both types of PPE. Silicone passive sampling methodology and analyses using gas chromatography with mass-spectrometry proved to be well-suited for this intervention study, allowing for the calculation and comparison of worker protection factors for 51 detected PAHs. Paired comparisons of the two PPE configurations found greater sum 2-3 ring PAH exposure underneath the standard PPE than the intervention PPE at the neck and chest, and at the chest for 4-7 ring PAHs (respective p-values: 0.00113, 0.0145, and 0.0196). Mean worker protection factors of the intervention PPE were also greater than the standard PPE for 98% of PAHs at the neck and chest. Notably, the intervention PPE showed more than 30 times the protection compared to the standard PPE against two highly carcinogenic PAHs, dibenzo[a,l]pyrene and benzo[c]fluorene. Nine of the detected PAHs in this study have not been previously reported in fireground exposure studies, and 26 other chemicals (not PAHs) were detected using a large chemical screening method on a subset of the silicone samplers. Silicone passive sampling appears to be an effective means for measuring dermal exposure reduction to fireground smoke, providing evidence in this study that reducing gaps in PPE interfaces could be further pursued as an intervention to reduce dermal exposure to PAHs, among other chemicals.


Assuntos
Poluentes Ocupacionais do Ar , Bombeiros , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/análise , Poluentes Ocupacionais do Ar/análise , Silicones/análise , Projetos Piloto , Equipamento de Proteção Individual
3.
J Occup Environ Hyg ; 19(9): 538-557, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35853136

RESUMO

The international fire service community is actively engaged in a wide range of activities focused on development, testing, and implementation of effective approaches to reduce exposure to contaminants and the related cancer risk. However, these activities are often viewed independent of each other and in the absence of the larger overall effort of occupational health risk mitigation. This narrative review synthesizes the current research on fire service contamination control in the context of the National Institute for Occupational Safety and Health (NIOSH) Hierarchy of Controls, a framework that supports decision making around implementing feasible and effective control solutions in occupational settings. Using this approach, we identify evidence-based measures that have been investigated and that can be implemented to protect firefighters during an emergency response, in the fire apparatus and at the fire station, and identify several knowledge gaps that remain. While a great deal of research and development has been focused on improving personal protective equipment for the various risks faced by the fire service, these measures are considered less effective. Administrative and engineering controls that can be used during and after the firefight have also received increased research interest in recent years. However, less research and development have been focused on higher level control measures such as engineering, substitution, and elimination, which may be the most effective, but are challenging to implement. A comprehensive approach that considers each level of control and how it can be implemented, and that is mindful of the need to balance contamination risk reduction against the fire service mission to save lives and protect property, is likely to be the most effective.


Assuntos
Bombeiros , Neoplasias , Exposição Ocupacional , Saúde Ocupacional , Contaminação de Medicamentos , Humanos , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle , Equipamento de Proteção Individual
4.
Int J Hyg Environ Health ; 242: 113969, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35421664

RESUMO

INTRODUCTION: Firefighters are exposed to volatile organic compounds (VOCs) during structural fire responses and training fires, several of which (e.g., benzene, acrolein, styrene) are known or probable carcinogens. Exposure studies have found that firefighters can absorb chemicals like benzene even when self-contained breathing apparatus (SCBA) are worn, suggesting that dermal absorption contributes to potentially harmful exposures. However, few studies have characterized VOC metabolites in urine from firefighters. OBJECTIVES: We quantified VOC metabolites in firefighters' urine following live firefighting activity across two field studies. METHODS: In two separate controlled field studies, spot urine was collected before and 3 h after firefighters and firefighter students responded to simulated residential and training fires. Urine was also collected from instructors from the training fire study before the first and 3 h after the last training scenario for each day (instructors led three training scenarios per day). Samples were analyzed for metabolites of VOCs to which firefighters may be exposed. RESULTS: In the residential fire study, urinary metabolites of xylenes (2MHA), toluene (BzMA), and styrene (MADA) increased significantly (at 0.05 level) from pre- to post-fire. In the training fire study, MADA concentrations increased significantly from pre- to post-fire for both firefighter students and instructors. Urinary concentrations of benzene metabolites (MUCA and PhMA) increased significantly from pre- to post-fire for instructors, while metabolites of xylenes (3MHA+4MHA) and acrolein (3HPMA) increased significantly for firefighter students. The two highest MUCA concentrations measured post-shift from instructors exceeded the BEI of 500 µg/g creatinine. CONCLUSIONS: Some of the metabolites that were significantly elevated post-fire are known or probable human carcinogens (benzene, styrene, acrolein); thus, exposure to these compounds should be eliminated or reduced as much as possible through the hierarchy of controls. Given stringent use of SCBA, it appears that dermal exposure contributes in part to the levels measured here.


Assuntos
Poluentes Ocupacionais do Ar , Bombeiros , Incêndios , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , Compostos Orgânicos Voláteis , Acroleína , Poluentes Ocupacionais do Ar/análise , Benzeno/análise , Carcinógenos , Bombeiros/educação , Humanos , Exposição Ocupacional/análise , Hidrocarbonetos Policíclicos Aromáticos/urina , Estirenos , Compostos Orgânicos Voláteis/análise , Xilenos
5.
Int J Hyg Environ Health ; 240: 113900, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34902715

RESUMO

The fire service has become more aware of the potential for adverse health outcomes due to occupational exposure to hazardous combustion byproducts. Because of these concerns, personal protective equipment (PPE) manufacturers have developed new protection concepts like particulate-blocking hoods to reduce firefighters' exposures. Additionally, fire departments have implemented exposure reduction interventions like routine laundering of PPE after fire responses. This study utilized a fireground exposure simulator (FES) with 24 firefighters performing firefighting activities on three consecutive days wearing one of three PPE ensembles (stratified by hood design and treatment of PPE): 1) new knit hood, new turnout jacket and new turnout pants 2) new particulate-blocking hood, new turnout jacket and new turnout pants or 3) laundered particulate-blocking hood, laundered turnout jacket and laundered turnout pants. As firefighters performed the firefighting activities, personal air sampling on the outside and inside the turnout jacket was conducted to quantify exposures to volatile organic compounds (VOCs) and naphthalene. Pre- and immediately post-fire exhaled breath samples were collected to characterize the absorption of VOCs. Benzene, toluene, and naphthalene were found to diffuse through and/or around the turnout jacket, as inside jacket benzene concentrations were often near levels reported outside the turnout jacket (9.7-11.7% median benzene reduction from outside the jacket to inside the jacket). The PPE ensemble did not appear to affect the level of contamination found inside the jacket for the compounds evaluated here. Benzene concentrations in exhaled breath increased significantly from pre to post-fire for all three groups (p-values < 0.05). The difference of pre-to post-fire benzene exhaled breath concentrations were positively associated with inside jacket and outside jacket benzene concentrations, even though self-contained breathing apparatus (SCBA) were worn during each response. This suggests the firefighters can absorb these compounds via the dermal route.


Assuntos
Poluentes Ocupacionais do Ar , Bombeiros , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Ocupacionais do Ar/análise , Benzeno/análise , Humanos , Naftalenos , Exposição Ocupacional/análise , Equipamento de Proteção Individual , Hidrocarbonetos Policíclicos Aromáticos/análise , Tolueno
6.
Int J Hyg Environ Health ; 236: 113782, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34119852

RESUMO

Firefighters may encounter items containing flame retardants (FRs), including organophosphate flame retardants (OPFRs) and polybrominated diphenyl ethers (PBDEs), during structure fires. This study utilized biological monitoring to characterize FR exposures in 36 firefighters assigned to interior, exterior, and overhaul job assignments, before and after responding to controlled residential fire scenarios. Firefighters provided four urine samples (pre-fire and 3-h, 6-h, and 12-h post-fire) and two serum samples (pre-fire and approximately 23-h post-fire). Urine samples were analyzed for OPFR metabolites, while serum samples were analyzed for PBDEs, brominated and chlorinated furans, and chlorinated dioxins. Urinary concentrations of diphenyl phosphate (DPhP), a metabolite of triphenyl phosphate (TPhP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP), a metabolite of tris(1,3-dichloro-2-propyl) phosphate (TDCPP), and bis(2-chloroethyl) phosphate (BCEtP), a metabolite of tris(2-chloroethyl) phosphate (TCEP), increased from pre-fire to 3-hr and 6-hr post-fire collection, but only the DPhP increase was statistically significant at a 0.05 level. The 3-hr and 6-hr post-fire concentrations of DPhP and BDCPP, as well as the pre-fire concentration of BDCPP, were statistically significantly higher than general population levels. BDCPP pre-fire concentrations were statistically significantly higher in firefighters who previously participated in a scenario (within the past 12 days) than those who were responding to their first scenario as part of the study. Similarly, firefighters previously assigned to interior job assignments had higher pre-fire concentrations of BDCPP than those previously assigned to exterior job assignments. Pre-fire serum concentrations of 2,3,4,7,8-pentachlorodibenzofuran (23478-PeCDF), a known human carcinogen, were also statistically significantly above the general population levels. Of the PBDEs quantified, only decabromodiphenyl ether (BDE-209) pre- and post-fire serum concentrations were statistically significantly higher than the general population. These results suggest firefighters absorbed certain FRs while responding to fire scenarios.


Assuntos
Dioxinas , Bombeiros , Incêndios , Retardadores de Chama , Furanos , Éteres Difenil Halogenados/análise , Humanos , Organofosfatos
7.
Artigo em Inglês | MEDLINE | ID: mdl-35673618

RESUMO

The fire service research community around the world has focused substantial resources on reducing firefighter risk for sudden cardiac events and chemical exposures that may lead to cancer. Research presented here summarizes important lessons learned from a full-scale residential Fire Study that allowed quantification of the risks as well as the effectiveness of interventions to reduce those risks. To address fireground exposure concerns, personal protective equipment (PPE) and administrative controls exist. But, these controls are not always straightforward to apply. Leadership and management concerns with ongoing implementation of these controls are introduced and opportunities for change management are discussed. While research provides a solid basis upon which to institute policy and practice, fireground leadership and management is critical to ensure appropriate implementation.

8.
Int J Hyg Environ Health ; 222(7): 991-1000, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31272797

RESUMO

INTRODUCTION: Training fires may constitute a major portion of some firefighters' occupational exposures to smoke. However, the magnitude and composition of those exposures are not well understood and may vary by the type of training scenario and fuels. OBJECTIVES: To understand how structure fire training contributes to firefighters' and instructors' select chemical exposures, we conducted biological monitoring during exercises involving combustion of pallet and straw and oriented strand board (OSB) or the use of simulated smoke. METHODS: Urine was analyzed for metabolites of polycyclic aromatic hydrocarbons (PAHs) and breath was analyzed for volatile organic compounds (VOCs) including benzene. RESULTS: Median concentrations of nearly all PAH metabolites in urine increased from pre-to 3-hr post-training for each scenario and were highest for OSB, followed by pallet and straw, and then simulated smoke. For instructors who supervised three trainings per day, median concentrations increased at each collection. A single day of OSB exercises led to a 30-fold increase in 1-hydroxypyrene for instructors, culminating in a median end-of-shift concentration 3.5-fold greater than median levels measured from firefighters in a previous controlled-residential fire study. Breath concentrations of benzene increased 2 to 7-fold immediately after the training exercises (with the exception of simulated smoke training). Exposures were highest for the OSB scenario and instructors accumulated PAHs with repeated daily exercises. CONCLUSIONS: Dermal absorption likely contributed to the biological levels as the respiratory route was well protected. Training academies should consider exposure risks as well as instructional objectives when selecting training exercises.


Assuntos
Poluentes Ocupacionais do Ar/análise , Benzeno/análise , Bombeiros , Exposição Ocupacional/análise , Hidrocarbonetos Policíclicos Aromáticos/urina , Poluentes Ocupacionais do Ar/urina , Monitoramento Biológico , Testes Respiratórios , Expiração , Feminino , Bombeiros/educação , Incêndios , Humanos , Masculino , Ensino
9.
J Occup Environ Hyg ; 16(2): 129-140, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30427284

RESUMO

Firefighters are occupationally exposed to products of combustion containing polycyclic aromatic hydrocarbons (PAHs) and flame retardants (FRs), potentially contributing to their increased risk for certain cancers. Personal protective equipment (PPE), including firefighter hoods, helps to reduce firefighters' exposure to toxic substances during fire responses by providing a layer of material on which contaminants deposit prior to reaching the firefighters skin. However, over time hoods that retain some contamination may actually contribute to firefighters' systemic dose. We investigated the effectiveness of laundering to reduce or remove contamination on the hoods, specifically PAHs and three classes of FRs: polybrominated diphenyl ethers (PBDEs), non-PBDE flame retardants (NPBFRs), and organophosphate flame retardants (OPFRs). Participants in the study were grouped into crews of 12 firefighters who worked in pairs by job assignment while responding to controlled fires in a single-family residential structure. For each pair of firefighters, one hood was laundered after every scenario and one was not. Bulk samples of the routinely laundered and unlaundered hoods from five pairs of firefighters were collected and analyzed. Residual levels of OPFRs, NPBFRs, and PAHs were lower in the routinely laundered hoods, with total levels of each class of chemicals being 56-81% lower, on average, than the unlaundered hoods. PBDEs, on average, were 43% higher in the laundered hoods, most likely from cross contamination. After this initial testing, four of the five unlaundered exposed hoods were subsequently laundered with other heavily exposed (unlaundered) and unexposed (new) hoods. Post-laundering evaluation of these hoods revealed increased levels of PBDEs, NPBFRs, and OPFRs in both previously exposed and unexposed hoods, indicating cross contamination. For PAHs, there was little evidence of cross contamination and the exposed hoods were significantly less contaminated after laundering (76% reduction; p = 0.011). Further research is needed to understand how residual contamination on hoods could contribute to firefighters' systemic exposures.


Assuntos
Bombeiros , Retardadores de Chama/análise , Lavanderia , Hidrocarbonetos Policíclicos Aromáticos/análise , Roupa de Proteção , Incêndios , Éteres Difenil Halogenados/análise , Humanos , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA