Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Pharmacol Drug Dev ; 11(4): 486-501, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182045

RESUMO

Roxadustat inhibits breast cancer resistance protein and organic anion transporting polypeptide 1B1, which can affect coadministered statin concentrations. Three open-label, 1-sequence crossover phase 1 studies in healthy subjects were conducted to assess effects from steady-state 200-mg roxadustat on pharmacokinetics and tolerability of 40-mg simvastatin (CL-0537 and CL-0541), 40-mg atorvastatin (CL-0538), or 10-mg rosuvastatin (CL-0537). Statins were dosed concomitantly with roxadustat in 28 (CL-0537) and 24 (CL-0538) healthy subjects, resulting in increases of maximum plasma concentration (Cmax ) and area under the plasma concentration-time curve from the time of dosing extrapolated to infinity (AUCinf ) 1.87- and 1.75-fold for simvastatin, 2.76- and 1.85-fold for simvastatin acid, 4.47- and 2.93-fold for rosuvastatin, and 1.34- and 1.96-fold for atorvastatin, respectively. Additionally, simvastatin dosed 2 hours before, and 4 and 10 hours after roxadustat in 28 (CL-0541) healthy subjects, resulted in increases of Cmax and AUCinf 2.32- to 3.10-fold and 1.56- to 1.74-fold for simvastatin and 2.34- to 5.98-fold and 1.89- to 3.42-fold for simvastatin acid, respectively. These increases were not attenuated by time-separated statin dosing. No clinically relevant differences were observed for terminal elimination half-life. Concomitant 200-mg roxadustat and a statin was generally well tolerated during the study period. Roxadustat effects on statin Cmax and AUCinf were statin and administration time dependent. When coadministered with roxadustat, statin-associated adverse reactions and the need for statin dose reduction should be evaluated.


Assuntos
Proteínas de Neoplasias , Sinvastatina , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Atorvastatina/efeitos adversos , Atorvastatina/farmacocinética , Estudos Cross-Over , Glicina/análogos & derivados , Voluntários Saudáveis , Humanos , Isoquinolinas , Rosuvastatina Cálcica/efeitos adversos , Rosuvastatina Cálcica/farmacocinética , Sinvastatina/efeitos adversos , Sinvastatina/farmacocinética
2.
Mol Pharm ; 10(5): 1783-94, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23560393

RESUMO

Mirabegron, a weak-basic compound, is a potent and selective ß3-adrenoceptor agonist for the treatment of overactive bladder. Mirabegron extended release formulation shows dose-dependent oral bioavailability in humans, which is likely attributable to saturation of intestinal efflux abilities leading to higher absorption with higher doses. This study evaluated the membrane permeability of mirabegron and investigated the involvement of human intestinal transport proteins in the membrane permeation of mirabegron. Transcellular transport and cellular/vesicular uptake assays were performed using Caco-2 cells and/or human intestinal efflux (P-glycoprotein [P-gp], breast cancer resistance protein [BCRP], and multidrug resistance associated protein 2 [MRP2]) and influx (peptide transporter 1 [PEPT1], OATP1A2, and OATP2B1) transporter-expressing cells, vesicles, or Xenopus laevis oocytes. The absorptive permeability coefficients of mirabegron in Caco-2 cells (1.68-1.83 × 10(-6) cm/s) at the apical and basal pH of 6.5 and 7.4, respectively, were slightly higher than those of nadolol (0.97-1.41 × 10(-6) cm/s), a low permeability reference standard, but lower than those of metoprolol and propranolol (both ranged from 8.49 to 11.6 × 10(-6) cm/s), low/high permeability boundary reference standards. Increasing buffer pH at the apical side from 5.5 to 8.0 gradually increased the absorptive permeation of mirabegron from 0.226 to 1.66 × 10(-6) cm/s, but was still less than the value in the opposite direction (11.0-14.2 × 10(-6) cm/s). The time- and concentration-dependent transport of mirabegron was observed in P-gp-expressing cells and OATP1A2-expressing oocytes with apparent Km values of 294 and 8.59 µM, respectively. In contrast, no clear BCRP-, MRP2-, PEPT1-, or OATP2B1-mediated uptake of mirabegron was observed in their expressing vesicles or cells. These findings suggest that mirabegron has low-to-moderate membrane permeability and P-gp is likely to be involved in its efflux into the lumen in the intestinal absorption process. The results also suggest that mirabegron could possibly be transported by intestinal influx transporters as well as simple diffusion.


Assuntos
Acetanilidas/farmacocinética , Agonistas de Receptores Adrenérgicos beta 3/farmacocinética , Tiazóis/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Disponibilidade Biológica , Transporte Biológico Ativo , Células CACO-2 , Permeabilidade da Membrana Celular , Feminino , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Absorção Intestinal/fisiologia , Células LLC-PK1 , Proteínas de Neoplasias/metabolismo , Oócitos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportador 1 de Peptídeos , Proteínas Recombinantes/metabolismo , Suínos , Simportadores/metabolismo , Bexiga Urinária Hiperativa/tratamento farmacológico , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA