Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (186)2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-36036582

RESUMO

Glioblastoma is difficult to eradicate with standard oncology therapies due to its high degree of invasiveness. Bioelectric treatments based on pulsed electric fields (PEFs) are promising for the improvement of treatment efficiency. However, they rely on rigid electrodes that cause acute and chronic damage, especially in soft tissues such as the brain. In this work, flexible electronics were used to deliver PEFs to tumors and the biological response was evaluated with fluorescent microscopy. Interdigitated gold electrodes on a thin, transparent parylene-C substrate were coated with the conducting polymer PEDOT:PSS, resulting in a conformable and biocompatible device. The effects of PEFs on tumors and their microenvironment were examined using various biological models. First, monolayers of glioblastoma cells were cultured on top of the electrodes to investigate phenomena in vitro. As an intermediate step, an in ovo model was developed where engineered tumor spheroids were grafted in the embryonic membrane of a quail. Due to the absence of an immune system, this led to highly vascularized tumors. At this early stage of development, embryos have no immune system, and tumors are not recognized as foreign bodies. Thus, they can develop fast while developing their own vessels from the existing embryo vascular system, which represents a valuable 3D cancer model. Finally, flexible electrode delivery of PEFs was evaluated in a complete organism with a functional immune system, using a syngenic, orthograft (intracranial) mouse model. Tumor spheroids were grafted into the brain of transgenic multi-fluorescent mice prior to the implantation of flexible organic electrode devices. A sealed cranial window enabled multiphoton imaging of the tumor and its microenvironment during treatment with PEFs over a period of several weeks.


Assuntos
Glioblastoma , Animais , Encéfalo/fisiologia , Eletrodos , Eletrônica , Fenômenos Eletrofisiológicos , Glioblastoma/terapia , Camundongos , Camundongos Transgênicos , Microambiente Tumoral
2.
Anal Bioanal Chem ; 402(5): 1813-26, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21910013

RESUMO

Organic electronics have, over the past two decades, developed into an exciting area of research and technology to replace classic inorganic semiconductors. Organic photovoltaics, light-emitting diodes, and thin-film transistors are already well developed and are currently being commercialized for a variety of applications. More recently, organic transistors have found new applications in the field of biosensors. The progress made in this direction is the topic of this review. Various configurations are presented, with their detection principle, and illustrated by examples from the literature.


Assuntos
Técnicas Biossensoriais/instrumentação , Eletrólitos/química , Compostos Orgânicos/química , Transistores Eletrônicos , Compostos de Anilina/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Desenho de Equipamento , Polímeros/química , Pirróis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA