Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Onco Targets Ther ; 16: 695-702, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635751

RESUMO

GOT2 is at the nexus of several critical metabolic pathways in homeostatic cellular and dysregulated cancer metabolism. Despite this, recent work has emphasized the remarkable plasticity of cancer cells to employ compensatory pathways when GOT2 is inhibited. Here, we review the metabolic roles of GOT2, highlighting findings in both normal and cancer cells. We emphasize how cancer cells repurpose cell intrinsic metabolism and their flexibility when GOT2 is inhibited. We close by using this framework to discuss key considerations for future investigations into cancer metabolism.

2.
Cell Metab ; 35(1): 134-149.e6, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36528023

RESUMO

Effective therapies are lacking for patients with advanced colorectal cancer (CRC). The CRC tumor microenvironment has elevated metabolic waste products due to altered metabolism and proximity to the microbiota. The role of metabolite waste in tumor development, progression, and treatment resistance is unclear. We generated an autochthonous metastatic mouse model of CRC and used unbiased multi-omic analyses to reveal a robust accumulation of tumoral ammonia. The high ammonia levels induce T cell metabolic reprogramming, increase exhaustion, and decrease proliferation. CRC patients have increased serum ammonia, and the ammonia-related gene signature correlates with altered T cell response, adverse patient outcomes, and lack of response to immune checkpoint blockade. We demonstrate that enhancing ammonia clearance reactivates T cells, decreases tumor growth, and extends survival. Moreover, decreasing tumor-associated ammonia enhances anti-PD-L1 efficacy. These findings indicate that enhancing ammonia detoxification can reactivate T cells, highlighting a new approach to enhance the efficacy of immunotherapies.


Assuntos
Amônia , Neoplasias Colorretais , Animais , Camundongos , Exaustão das Células T , Linfócitos T , Neoplasias Colorretais/patologia , Imunoterapia , Microambiente Tumoral
3.
Nat Cancer ; 3(11): 1386-1403, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36411320

RESUMO

The pancreatic tumor microenvironment drives deregulated nutrient availability. Accordingly, pancreatic cancer cells require metabolic adaptations to survive and proliferate. Pancreatic cancer subtypes have been characterized by transcriptional and functional differences, with subtypes reported to exist within the same tumor. However, it remains unclear if this diversity extends to metabolic programming. Here, using metabolomic profiling and functional interrogation of metabolic dependencies, we identify two distinct metabolic subclasses among neoplastic populations within individual human and mouse tumors. Furthermore, these populations are poised for metabolic cross-talk, and in examining this, we find an unexpected role for asparagine supporting proliferation during limited respiration. Constitutive GCN2 activation permits ATF4 signaling in one subtype, driving excess asparagine production. Asparagine release provides resistance during impaired respiration, enabling symbiosis. Functionally, availability of exogenous asparagine during limited respiration indirectly supports maintenance of aspartate pools, a rate-limiting biosynthetic precursor. Conversely, depletion of extracellular asparagine with PEG-asparaginase sensitizes tumors to mitochondrial targeting with phenformin.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Animais , Camundongos , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Asparagina/metabolismo , Adenocarcinoma/tratamento farmacológico , Simbiose , Microambiente Tumoral , Neoplasias Pancreáticas
4.
Elife ; 112022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35815941

RESUMO

Mitochondrial glutamate-oxaloacetate transaminase 2 (GOT2) is part of the malate-aspartate shuttle, a mechanism by which cells transfer reducing equivalents from the cytosol to the mitochondria. GOT2 is a key component of mutant KRAS (KRAS*)-mediated rewiring of glutamine metabolism in pancreatic ductal adenocarcinoma (PDA). Here, we demonstrate that the loss of GOT2 disturbs redox homeostasis and halts proliferation of PDA cells in vitro. GOT2 knockdown (KD) in PDA cell lines in vitro induced NADH accumulation, decreased Asp and α-ketoglutarate (αKG) production, stalled glycolysis, disrupted the TCA cycle, and impaired proliferation. Oxidizing NADH through chemical or genetic means resolved the redox imbalance induced by GOT2 KD, permitting sustained proliferation. Despite a strong in vitro inhibitory phenotype, loss of GOT2 had no effect on tumor growth in xenograft PDA or autochthonous mouse models. We show that cancer-associated fibroblasts (CAFs), a major component of the pancreatic tumor microenvironment (TME), release the redox active metabolite pyruvate, and culturing GOT2 KD cells in CAF conditioned media (CM) rescued proliferation in vitro. Furthermore, blocking pyruvate import or pyruvate-to-lactate reduction prevented rescue of GOT2 KD in vitro by exogenous pyruvate or CAF CM. However, these interventions failed to sensitize xenografts to GOT2 KD in vivo, demonstrating the remarkable plasticity and differential metabolism deployed by PDA cells in vitro and in vivo. This emphasizes how the environmental context of distinct pre-clinical models impacts both cell-intrinsic metabolic rewiring and metabolic crosstalk with the TME.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Aspartato Aminotransferase Mitocondrial/genética , Aspartato Aminotransferase Mitocondrial/metabolismo , Carcinoma Ductal Pancreático/patologia , Proteínas de Ligação a Ácido Graxo , Humanos , Camundongos , NAD/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ácido Pirúvico/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
5.
Med ; 3(2): 87-89, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35590211

RESUMO

Dietary interventions hold promise in cancer treatments. However, clinical application has been limited by a lack of mechanistic understanding of the metabolic effects. In this issue, Yang et al. use mouse models and isotope tracing to demonstrate that the ketogenic diet induces reductive stress and primes pancreatic tumors for chemotherapy.1.


Assuntos
Dieta Cetogênica , Neoplasias Pancreáticas , Animais , Carboidratos , Modelos Animais de Doenças , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico
6.
Cell Mol Gastroenterol Hepatol ; 13(6): 1673-1699, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35245687

RESUMO

BACKGROUND & AIMS: Oncogenic Kirsten Rat Sarcoma virus (KRAS) is the hallmark mutation of human pancreatic cancer and a driver of tumorigenesis in genetically engineered mouse models of the disease. Although the tumor cell-intrinsic effects of oncogenic Kras expression have been widely studied, its role in regulating the extensive pancreatic tumor microenvironment is less understood. METHODS: Using a genetically engineered mouse model of inducible and reversible oncogenic Kras expression and a combination of approaches that include mass cytometry and single-cell RNA sequencing we studied the effect of oncogenic KRAS in the tumor microenvironment. RESULTS: We have discovered that non-cell autonomous (ie, extrinsic) oncogenic KRAS signaling reprograms pancreatic fibroblasts, activating an inflammatory gene expression program. As a result, fibroblasts become a hub of extracellular signaling, and the main source of cytokines mediating the polarization of protumorigenic macrophages while also preventing tissue repair. CONCLUSIONS: Our study provides fundamental knowledge on the mechanisms underlying the formation of the fibroinflammatory stroma in pancreatic cancer and highlights stromal pathways with the potential to be exploited therapeutically.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Animais , Fibroblastos/metabolismo , Vírus do Sarcoma Murino de Kirsten/metabolismo , Camundongos , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
7.
Cancer Cell ; 40(2): 185-200.e6, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-34951957

RESUMO

Microbial dysbiosis is a colorectal cancer (CRC) hallmark and contributes to inflammation, tumor growth, and therapy response. Gut microbes signal via metabolites, but how the metabolites impact CRC is largely unknown. We interrogated fecal metabolites associated with mouse models of colon tumorigenesis with varying mutational load. We find that microbial metabolites from healthy mice or humans are growth-repressive, and this response is attenuated in mice and patients with CRC. Microbial profiling reveals that Lactobacillus reuteri and its metabolite, reuterin, are downregulated in mouse and human CRC. Reuterin alters redox balance, and reduces proliferation and survival in colon cancer cells. Reuterin induces selective protein oxidation and inhibits ribosomal biogenesis and protein translation. Exogenous Lactobacillus reuteri restricts colon tumor growth, increases tumor reactive oxygen species, and decreases protein translation in vivo. Our findings indicate that a healthy microbiome and specifically, Lactobacillus reuteri, is protective against CRC through microbial metabolite exchange.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Microbioma Gastrointestinal , Gliceraldeído/análogos & derivados , Oxirredução , Propano/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Metabolismo Energético , Glutationa/metabolismo , Gliceraldeído/metabolismo , Gliceraldeído/farmacologia , Interações entre Hospedeiro e Microrganismos , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Metabolômica/métodos , Metagenômica/métodos , Camundongos , Modelos Biológicos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo , Propano/farmacologia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Elife ; 102021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34951587

RESUMO

Rewired metabolism is a hallmark of pancreatic ductal adenocarcinomas (PDA). Previously, we demonstrated that PDA cells enhance glycosylation precursor biogenesis through the hexosamine biosynthetic pathway (HBP) via activation of the rate limiting enzyme, glutamine-fructose 6-phosphate amidotransferase 1 (GFAT1). Here, we genetically ablated GFAT1 in human PDA cell lines, which completely blocked proliferation in vitro and led to cell death. In contrast, GFAT1 knockout did not preclude the growth of human tumor xenografts in mice, suggesting that cancer cells can maintain fidelity of glycosylation precursor pools by scavenging nutrients from the tumor microenvironment. We found that hyaluronic acid (HA), an abundant carbohydrate polymer in pancreatic tumors composed of repeating N-acetyl-glucosamine (GlcNAc) and glucuronic acid sugars, can bypass GFAT1 to refuel the HBP via the GlcNAc salvage pathway. Together, these data show HA can serve as a nutrient fueling PDA metabolism beyond its previously appreciated structural and signaling roles.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Ácido Hialurônico/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Técnicas de Inativação de Genes , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Hexosaminas/biossíntese , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante Heterólogo
9.
Sci Rep ; 11(1): 17394, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462518

RESUMO

Dysfunctional visceral adipose tissue (VAT) in obesity is associated with type 2 diabetes (DM) but underlying mechanisms remain unclear. Our objective in this discovery analysis was to identify genes and proteins regulated by DM to elucidate aberrant cellular metabolic and signaling mediators. We performed label-free proteomics and RNA-sequencing analysis of VAT from female bariatric surgery subjects with DM and without DM (NDM). We quantified 1965 protein groups, 23 proteins, and 372 genes that were differently abundant in DM vs. NDM VAT. Proteins downregulated in DM were related to fatty acid synthesis and mitochondrial function (fatty acid synthase, FASN; dihydrolipoyl dehydrogenase, mitochondrial, E3 component, DLD; succinate dehydrogenase-α, SDHA) while proteins upregulated in DM were associated with innate immunity and transcriptional regulation (vitronectin, VTN; endothelial protein C receptor, EPCR; signal transducer and activator of transcription 5B, STAT5B). Transcriptome indicated defects in innate inflammation, lipid metabolism, and extracellular matrix (ECM) function, and components of complement classical and alternative cascades. The VAT proteome and transcriptome shared 13 biological processes impacted by DM, related to complement activation, cell proliferation and migration, ECM organization, lipid metabolism, and gluconeogenesis. Our data revealed a marked effect of DM in downregulating FASN. We also demonstrate enrichment of complement factor B (CFB), coagulation factor XIII A chain (F13A1), thrombospondin 1 (THBS1), and integrins at mRNA and protein levels, albeit with lower q-values and lack of Western blot or PCR confirmation. Our findings suggest putative mechanisms of VAT dysfunction in DM.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Gordura Intra-Abdominal/metabolismo , Obesidade/patologia , Proteoma/metabolismo , Transcriptoma , Cirurgia Bariátrica , Diabetes Mellitus Tipo 2/complicações , Regulação para Baixo , Matriz Extracelular/metabolismo , Feminino , Humanos , Metabolismo dos Lipídeos/genética , Mitocôndrias/genética , Obesidade/complicações , Análise de Componente Principal , Regulação para Cima
10.
Nat Commun ; 12(1): 4860, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381026

RESUMO

Cancer metabolism is rewired to support cell survival in response to intrinsic and environmental stressors. Identification of strategies to target these adaptions is an area of active research. We previously described a cytosolic aspartate aminotransaminase (GOT1)-driven pathway in pancreatic cancer used to maintain redox balance. Here, we sought to identify metabolic dependencies following GOT1 inhibition to exploit this feature of pancreatic cancer and to provide additional insight into regulation of redox metabolism. Using pharmacological methods, we identify cysteine, glutathione, and lipid antioxidant function as metabolic vulnerabilities following GOT1 withdrawal. We demonstrate that targeting any of these pathways triggers ferroptosis, an oxidative, iron-dependent form of cell death, in GOT1 knockdown cells. Mechanistically, we reveal that GOT1 inhibition represses mitochondrial metabolism and promotes a catabolic state. Consequently, we find that this enhances labile iron availability through autophagy, which potentiates the activity of ferroptotic stimuli. Overall, our study identifies a biochemical connection between GOT1, iron regulation, and ferroptosis.


Assuntos
Aspartato Aminotransferase Citoplasmática/antagonistas & inibidores , Ferroptose , Neoplasias Pancreáticas/metabolismo , Animais , Antioxidantes/farmacologia , Aspartato Aminotransferase Citoplasmática/genética , Aspartato Aminotransferase Citoplasmática/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Cistina/metabolismo , Ferroptose/efeitos dos fármacos , Glutationa/biossíntese , Humanos , Ferro/metabolismo , Camundongos , Mitocôndrias/metabolismo , Neoplasias Pancreáticas/patologia
11.
Nat Rev Cancer ; 21(8): 510-525, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34244683

RESUMO

Oncogenic mutations in KRAS drive common metabolic programmes that facilitate tumour survival, growth and immune evasion in colorectal carcinoma, non-small-cell lung cancer and pancreatic ductal adenocarcinoma. However, the impacts of mutant KRAS signalling on malignant cell programmes and tumour properties are also dictated by tumour suppressor losses and physiological features specific to the cell and tissue of origin. Here we review convergent and disparate metabolic networks regulated by oncogenic mutant KRAS in colon, lung and pancreas tumours, with an emphasis on co-occurring mutations and the role of the tumour microenvironment. Furthermore, we explore how these networks can be exploited for therapeutic gain.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Carcinoma Ductal Pancreático/genética , Neoplasias Colorretais/genética , Humanos , Neoplasias Pulmonares/genética , Redes e Vias Metabólicas , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Microambiente Tumoral
12.
JCI Insight ; 6(14)2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34138755

RESUMO

Cancer cells reprogram cellular metabolism to maintain adequate nutrient pools to sustain proliferation. Moreover, autophagy is a regulated mechanism to break down dysfunctional cellular components and recycle cellular nutrients. However, the requirement for autophagy and the integration in cancer cell metabolism is not clear in colon cancer. Here, we show a cell-autonomous dependency of autophagy for cell growth in colorectal cancer. Loss of epithelial autophagy inhibits tumor growth in both sporadic and colitis-associated cancer models. Genetic and pharmacological inhibition of autophagy inhibits cell growth in colon cancer-derived cell lines and patient-derived enteroid models. Importantly, normal colon epithelium and patient-derived normal enteroid growth were not decreased following autophagy inhibition. To couple the role of autophagy to cellular metabolism, a cell culture screen in conjunction with metabolomic analysis was performed. We identified a critical role of autophagy to maintain mitochondrial metabolites for growth. Loss of mitochondrial recycling through inhibition of mitophagy hinders colon cancer cell growth. These findings have revealed a cell-autonomous role of autophagy that plays a critical role in regulating nutrient pools in vivo and in cell models, and it provides therapeutic targets for colon cancer.


Assuntos
Neoplasias Associadas a Colite/imunologia , Mitocôndrias/metabolismo , Mitofagia/imunologia , Nutrientes/deficiência , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colite/induzido quimicamente , Colite/complicações , Colite/imunologia , Colite/patologia , Neoplasias Associadas a Colite/tratamento farmacológico , Neoplasias Associadas a Colite/genética , Neoplasias Associadas a Colite/patologia , Colo/citologia , Colo/imunologia , Colo/patologia , Sulfato de Dextrana/administração & dosagem , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Feminino , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Masculino , Metabolômica , Camundongos , Camundongos Transgênicos , Mitocôndrias/imunologia , Mitofagia/efeitos dos fármacos
13.
Nat Metab ; 3(7): 969-982, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34155415

RESUMO

Colorectal cancer (CRC) requires massive iron stores, but the complete mechanisms by which CRC modulates local iron handling are poorly understood. Here, we demonstrate that hepcidin is activated ectopically in CRC. Mice deficient in hepcidin specifically in the colon tumour epithelium, compared with wild-type littermates, exhibit significantly diminished tumour number, burden and size in a sporadic model of CRC, whereas accumulation of intracellular iron by deletion of the iron exporter ferroportin exacerbates these tumour parameters. Metabolomic analysis of three-dimensional patient-derived CRC tumour enteroids indicates a prioritization of iron in CRC for the production of nucleotides, which is recapitulated in our hepcidin/ferroportin mouse CRC models. Mechanistically, our data suggest that iron chelation decreases mitochondrial function, thereby altering nucleotide synthesis, whereas exogenous supplementation of nucleosides or aspartate partially rescues tumour growth in patient-derived enteroids and CRC cell lines in the presence of an iron chelator. Collectively, these data suggest that ectopic hepcidin in the tumour epithelium establishes an axis to sequester iron in order to maintain the nucleotide pool and sustain proliferation in colorectal tumours.


Assuntos
Neoplasias Colorretais/metabolismo , Hepcidinas/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Nucleotídeos/metabolismo , Animais , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Humanos , Camundongos
14.
J Clin Invest ; 131(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33914705

RESUMO

Hypoxia is a hallmark of solid tumors that promotes cell growth, survival, and metastasis and confers resistance to chemo and radiotherapies. Hypoxic responses are largely mediated by the transcription factors hypoxia-inducible factor 1α (HIF-1α) and HIF-2α. Our work demonstrates that HIF-2α is essential for colorectal cancer (CRC) progression. However, targeting hypoxic cells is difficult, and tumors rapidly acquire resistance to inhibitors of HIF-2α. To overcome this limitation, we performed a small molecule screen to identify HIF-2α-dependent vulnerabilities. Several known ferroptosis activators and dimethyl fumarate (DMF), a cell-permeable mitochondrial metabolite derivative, led to selective synthetic lethality in HIF-2α-expressing tumor enteroids. Our work demonstrated that HIF-2α integrated 2 independent forms of cell death via regulation of cellular iron and oxidation. First, activation of HIF-2α upregulated lipid and iron regulatory genes in CRC cells and colon tumors in mice and led to a ferroptosis-susceptible cell state. Second, via an iron-dependent, lipid peroxidation-independent pathway, HIF-2α activation potentiated ROS via irreversible cysteine oxidation and enhanced cell death. Inhibition or knockdown of HIF-2α decreased ROS and resistance to oxidative cell death in vitro and in vivo. Our results demonstrated a mechanistic vulnerability in cancer cells that were dependent on HIF-2α that can be leveraged for CRC treatment.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Ferro/metabolismo , Proteínas de Neoplasias/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Morte Celular/genética , Hipóxia Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células HCT116 , Células HT29 , Humanos , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Oxirredução
15.
Clin Cancer Res ; 23(4): 1036-1048, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27550999

RESUMO

Purpose: Conventional chemotherapy has modest efficacy in advanced adenoid cystic carcinomas (ACC). Tumor recurrence is a major challenge in the management of ACC patients. Here, we evaluated the antitumor effect of a novel small-molecule inhibitor of the MDM2-p53 interaction (MI-773) combined with cisplatin in patient-derived xenograft (PDX) ACC tumors.Experimental Design: Therapeutic strategies with MI-773 and/or cisplatin were evaluated in SCID mice harboring PDX ACC tumors (UM-PDX-HACC-5) and in low passage primary human ACC cells (UM-HACC-2A, -2B, -5, -6) in vitro The effect of therapy on the fraction of cancer stem cells (CSC) was determined by flow cytometry for ALDH activity and CD44 expression.Results: Combined therapy with MI-773 with cisplatin caused p53 activation, induction of apoptosis, and regression of ACC PDX tumors. Western blots revealed induction of MDM2, p53 and downstream p21 expression, and regulation of apoptosis-related proteins PUMA, BAX, Bcl-2, Bcl-xL, and active caspase-9 upon MI-773 treatment. Both single-agent MI-773 and MI-773 combined with cisplatin decreased the fraction of CSCs in PDX ACC tumors. Notably, neoadjuvant MI-773 and surgery eliminated tumor recurrences during a postsurgical follow-up of more than 300 days. In contrast, 62.5% of mice that received vehicle control presented with palpable tumor recurrences within this time period (P = 0.0097).Conclusions: Collectively, these data demonstrate that therapeutic inhibition of MDM2-p53 interaction by MI-773 decreased the CSC fraction, sensitized ACC xenograft tumors to cisplatin, and eliminated tumor recurrence. These results suggest that patients with ACC might benefit from the therapeutic inhibition of the MDM2-p53 interaction. Clin Cancer Res; 23(4); 1036-48. ©2016 AACR.


Assuntos
Carcinoma Adenoide Cístico/tratamento farmacológico , Proteínas de Neoplasias/genética , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/efeitos dos fármacos , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/administração & dosagem , Feminino , Humanos , Masculino , Camundongos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/prevenção & controle , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Compostos de Espiro/administração & dosagem , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Clin Cancer Res ; 23(10): 2516-2527, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-27780858

RESUMO

Purpose: Locoregional recurrence is a frequent treatment outcome for patients with advanced head and neck squamous cell carcinoma (HNSCC). Emerging evidence suggests that tumor recurrence is mediated by a small subpopulation of uniquely tumorigenic cells, that is, cancer stem cells (CSC), that are resistant to conventional chemotherapy, endowed with self-renewal and multipotency.Experimental Design: Here, we evaluated the efficacy of MEDI0641, a novel antibody-drug conjugate targeted to 5T4 and carrying a DNA-damaging "payload" (pyrrolobenzodiazepine) in preclinical models of HNSCC.Results: Analysis of a tissue microarray containing 77 HNSCC with follow-up of up to 12 years revealed that patients with 5T4high tumors displayed lower overall survival than those with 5T4low tumors (P = 0.038). 5T4 is more highly expressed in head and neck CSC (ALDHhighCD44high) than in control cells (non-CSC). Treatment with MEDI0641 caused a significant reduction in the CSC fraction in HNSCC cells (UM-SCC-11B, UM-SCC-22B) in vitro Notably, a single intravenous dose of 1 mg/kg MEDI0641 caused long-lasting tumor regression in three patient-derived xenograft (PDX) models of HNSCC. MEDI0641 ablated CSC in the PDX-SCC-M0 model, reduced it by five-fold in the PDX-SCC-M1, and two-fold in the PDX-SCC-M11 model. Importantly, mice (n = 12) treated with neoadjuvant, single administration of MEDI0641 prior to surgical tumor removal showed no recurrence for more than 200 days, whereas the control group had 7 recurrences (in 12 mice; P = 0.0047).Conclusions: Collectively, these findings demonstrate that an anti-5T4 antibody-drug conjugate reduces the fraction of CSCs and prevents local recurrence and suggest a novel therapeutic approach for patients with HNSCC. Clin Cancer Res; 23(10); 2516-27. ©2016 AACR.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Imunoconjugados/administração & dosagem , Glicoproteínas de Membrana/imunologia , Animais , Benzodiazepinas/administração & dosagem , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Autorrenovação Celular/genética , Autorrenovação Celular/imunologia , Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/imunologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Imunoconjugados/imunologia , Camundongos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , Pirróis/administração & dosagem , Carcinoma de Células Escamosas de Cabeça e Pescoço , Análise Serial de Tecidos , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Life Sci ; 102(2): 105-10, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24657891

RESUMO

AIMS: Osthole, a coumarin derivative, has been used in Chinese medicine and studies have suggested a potential use in treatment of diabetes and cancers. Therefore, we investigated the effects of osthole and other coumarins on GLUT1 activity in two cell lines that exclusively express GLUT1. MAIN METHODS: We measured the magnitude and time frame of the effects of osthole and related coumarins on glucose uptake in two cells lines; L929 fibroblast cells which have low GLUT1 expression levels and low basal glucose uptake and HCLE cells which have high GLUT1 concentrations and high basal uptake. We also explored the effects of these coumarins in combination with other GLUT1 activators. KEY FINDINGS: Osthole activates glucose uptake in L929 cells with a modest maximum 1.7-fold activation achieved by 50 µM with both activation and recovery occurring within minutes. However, osthole blocks full acute activation of glucose uptake by other, more robust activators. This behavior mimics the effects of other thiol reactive compounds and suggests that osthole is interacting with cysteine residues, possibly within GLUT1 itself. Coumarin, 7-hydroxycoumarin, and 7-methoxycoumarin, do not affect glucose uptake, which is consistent with the notion that the isoprenoid structure in osthole may be important to gain membrane access to GLUT1. In contrast to its effects in L929 cells, osthole inhibits basal glucose uptake in the more active HCLE cells. SIGNIFICANCE: The differential effects of osthole in L929 and HCLE cells indicated that regulation of GLUT1 varies, likely depending on its membrane concentration.


Assuntos
Cumarínicos/química , Cumarínicos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glucose/antagonistas & inibidores , Glucose/metabolismo , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Transporte Biológico Ativo/fisiologia , Linhagem Celular , Linhagem Celular Transformada , Humanos , Camundongos
18.
Biochimie ; 99: 189-94, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24333987

RESUMO

The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry.


Assuntos
Fibroblastos/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Acroleína/análogos & derivados , Acroleína/farmacologia , Animais , Arsenicais/farmacologia , Berberina/farmacologia , Transporte Biológico , Linhagem Celular , Cistina/metabolismo , Desoxiglucose/metabolismo , Ativadores de Enzimas/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno/farmacologia , Camundongos , Substâncias Redutoras/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA