Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RNA Biol ; 21(1): 31-44, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38828710

RESUMO

Non-thermal plasma, a partially ionized gas, holds significant potential for clinical applications, including wound-healing support, oral therapies, and anti-tumour treatments. While its applications showed promising outcomes, the underlying molecular mechanisms remain incompletely understood. We thus apply non-thermal plasma to mouse auricular skin and conducted non-coding RNA sequencing, as well as single-cell blood sequencing. In a time-series analysis (five timepoints spanning 2 hours), we compare the expression of microRNAs in the plasma-treated left ears to the unexposed right ears of the same mice as well as to the ears of unexposed control mice. Our findings indicate specific effects in the treated ears for a set of five miRNAs: mmu-miR-144-5p, mmu-miR-144-3p, mmu-miR-142a-5p, mmu-miR-223-3p, and mmu-miR-451a. Interestingly, mmu-miR-223-3p also exhibits an increase over time in the right non-treated ear of the exposed mice, suggesting systemic effects. Notably, this miRNA, along with mmu-miR-142a-5p and mmu-miR-144-3p, regulates genes and pathways associated with wound healing and tissue regeneration (namely ErbB, FoxO, Hippo, and PI3K-Akt signalling). This co-regulation is particularly remarkable considering the significant seed dissimilarities among the miRNAs. Finally, single-cell sequencing of PBMCs reveals the downregulation of 12 from 15 target genes in B-cells, Cd4+ and Cd8+ T-cells. Collectively, our data provide evidence for a systemic effect of non-thermal plasma.


Assuntos
Regulação da Expressão Gênica , MicroRNAs , Gases em Plasma , Pele , MicroRNAs/genética , Animais , Camundongos , Pele/metabolismo , Gases em Plasma/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Cicatrização/efeitos dos fármacos , Transdução de Sinais , Sistema Imunitário/metabolismo
2.
RNA Biol ; 20(1): 1-9, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36511578

RESUMO

For cancers and other pathologies, early diagnosis remains the most promising path to survival. Profiling of longitudinal cohorts facilitates insights into trajectories of biomarkers. We measured microRNA expression in 240 serum samples from patients with colon, lung, and breast cancer and from cancer-free controls. Each patient provided at least two serum samples, one prior to diagnosis and one following diagnosis. The median time interval between the samples was 11.6 years. Using computational models, we evaluated the circulating profiles of 21 microRNAs. The analysis yielded two sets of biomarkers, static ones that show an absolute difference between certain cancer types and controls and dynamic ones where the level over time provided higher diagnostic information content. In the first group, miR-99a-5p stands out for all three cancer types. In the second group, miR-155-5p allows to predict lung cancers and colon cancers. Classification in samples from cancer and non-cancer patients using gradient boosted trees reached an average accuracy of 79.9%. The results suggest that individual change over time or an absolute value at one time point may predict a disease with high specificity and sensitivity.


Assuntos
MicroRNA Circulante , MicroRNAs , Neoplasias , Humanos , Biomarcadores , Biomarcadores Tumorais/genética , Detecção Precoce de Câncer , Perfilação da Expressão Gênica , MicroRNAs/genética , Neoplasias/diagnóstico , Neoplasias/genética
3.
Nature ; 603(7900): 309-314, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236985

RESUMO

The ability to slow or reverse biological ageing would have major implications for mitigating disease risk and maintaining vitality1. Although an increasing number of interventions show promise for rejuvenation2, their effectiveness on disparate cell types across the body and the molecular pathways susceptible to rejuvenation remain largely unexplored. Here we performed single-cell RNA sequencing on 20 organs to reveal cell-type-specific responses to young and aged blood in heterochronic parabiosis. Adipose mesenchymal stromal cells, haematopoietic stem cells and hepatocytes are among those cell types that are especially responsive. On the pathway level, young blood invokes new gene sets in addition to reversing established ageing patterns, with the global rescue of genes encoding electron transport chain subunits pinpointing a prominent role of mitochondrial function in parabiosis-mediated rejuvenation. We observed an almost universal loss of gene expression with age that is largely mimicked by parabiosis: aged blood reduces global gene expression, and young blood restores it in select cell types. Together, these data lay the groundwork for a systemic understanding of the interplay between blood-borne factors and cellular integrity.


Assuntos
Parabiose , Análise de Célula Única , Adipócitos , Envelhecimento/genética , Transporte de Elétrons/genética , Células-Tronco Hematopoéticas , Hepatócitos , Células-Tronco Mesenquimais , Mitocôndrias , Especificidade de Órgãos/genética , RNA-Seq , Rejuvenescimento
4.
Nature ; 594(7862): 265-270, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34040261

RESUMO

Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning-a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.


Assuntos
Blockchain , Tomada de Decisão Clínica/métodos , Confidencialidade , Conjuntos de Dados como Assunto , Aprendizado de Máquina , Medicina de Precisão/métodos , COVID-19/diagnóstico , COVID-19/epidemiologia , Surtos de Doenças , Feminino , Humanos , Leucemia/diagnóstico , Leucemia/patologia , Leucócitos/patologia , Pneumopatias/diagnóstico , Aprendizado de Máquina/tendências , Masculino , Software , Tuberculose/diagnóstico
5.
Nucleic Acids Res ; 49(W1): W46-W51, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34038559

RESUMO

With Aviator, we present a web service and repository that facilitates surveillance of online tools. Aviator consists of a user-friendly website and two modules, a literature-mining based general and a manually curated module. The general module currently checks 9417 websites twice a day with respect to their availability and stores many features (frontend and backend response time, required RAM and size of the web page, security certificates, analytic tools and trackers embedded in the webpage and others) in a data warehouse. Aviator is also equipped with an analysis functionality, for example authors can check and evaluate the availability of their own tools or those of their peers. Likewise, users can check the availability of a certain tool they intend to use in research or teaching to avoid including unstable tools. The curated section of Aviator offers additional services. We provide API snippets for common programming languages (Perl, PHP, Python, JavaScript) as well as an OpenAPI documentation for embedding in the backend of own web services for an automatic test of their function. We query the respective APIs twice a day and send automated notifications in case of an unexpected result. Naturally, the same analysis functionality as for the literature-based module is available for the curated section. Aviator can freely be used at https://www.ccb.uni-saarland.de/aviator.


Assuntos
Gráficos por Computador , Software , Reposicionamento de Medicamentos , Humanos , Internet , Melanoma/metabolismo , Receptores Odorantes/metabolismo , Transdução de Sinais , Tratamento Farmacológico da COVID-19
6.
Nucleic Acids Res ; 49(1): 127-144, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33305319

RESUMO

MicroRNAs are regulators of gene expression. A wide-spread, yet not validated, assumption is that the targetome of miRNAs is non-randomly distributed across the transcriptome and that targets share functional pathways. We developed a computational and experimental strategy termed high-throughput miRNA interaction reporter assay (HiTmIR) to facilitate the validation of target pathways. First, targets and target pathways are predicted and prioritized by computational means to increase the specificity and positive predictive value. Second, the novel webtool miRTaH facilitates guided designs of reporter assay constructs at scale. Third, automated and standardized reporter assays are performed. We evaluated HiTmIR using miR-34a-5p, for which TNF- and TGFB-signaling, and Parkinson's Disease (PD)-related categories were identified and repeated the pipeline for miR-7-5p. HiTmIR validated 58.9% of the target genes for miR-34a-5p and 46.7% for miR-7-5p. We confirmed the targeting by measuring the endogenous protein levels of targets in a neuronal cell model. The standardized positive and negative targets are collected in the new miRATBase database, representing a resource for training, or benchmarking new target predictors. Applied to 88 target predictors with different confidence scores, TargetScan 7.2 and miRanda outperformed other tools. Our experiments demonstrate the efficiency of HiTmIR and provide evidence for an orchestrated miRNA-gene targeting.


Assuntos
Regulação da Expressão Gênica/genética , Ensaios de Triagem em Larga Escala , MicroRNAs/genética , 1-Metil-4-fenilpiridínio , Regiões 3' não Traduzidas , Linhagem Celular , Linhagem Celular Tumoral , Genes Reporter , Humanos , Mesencéfalo/citologia , Neuroblastoma/patologia , Neurônios/metabolismo , Doença de Parkinson/genética , Valor Preditivo dos Testes , Sensibilidade e Especificidade , Transdução de Sinais , Transcriptoma , Fator de Crescimento Transformador beta/fisiologia , Fator de Necrose Tumoral alfa/fisiologia
7.
Nucleic Acids Res ; 49(2): e10, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33290507

RESUMO

Results of massive parallel sequencing-by-synthesis vary depending on the sequencing approach. CoolMPS™ is a new sequencing chemistry that incorporates bases by labeled antibodies. To evaluate the performance, we sequenced 240 human non-coding RNA samples (dementia patients and controls) with and without CoolMPS. The Q30 value as indicator of the per base sequencing quality increased from 91.8 to 94%. The higher quality was reached across the whole read length. Likewise, the percentage of reads mapping to the human genome increased from 84.9 to 86.2%. For both technologies, we computed similar distributions between different RNA classes (miRNA, piRNA, tRNA, snoRNA and yRNA) and within the classes. While standard sequencing-by-synthesis allowed to recover more annotated miRNAs, CoolMPS yielded more novel miRNAs. The correlation between the two methods was 0.97. Evaluating the diagnostic performance, we observed lower minimal P-values for CoolMPS (adjusted P-value of 0.0006 versus 0.0004) and larger effect sizes (Cohen's d of 0.878 versus 0.9). Validating 19 miRNAs resulted in a correlation of 0.852 between CoolMPS and reverse transcriptase-quantitative polymerase chain reaction. Comparison to data generated with Illumina technology confirmed a known shift in the overall RNA composition. With CoolMPS we evaluated a novel sequencing-by-synthesis technology showing high performance for the analysis of non-coding RNAs.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA não Traduzido/química , Análise de Sequência de RNA/métodos , Especificidade de Anticorpos , Biomarcadores , Biologia Computacional , DNA Complementar/genética , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Demência/sangue , Demência/genética , Técnica Direta de Fluorescência para Anticorpo , Biblioteca Gênica , Humanos , Biópsia Líquida , MicroRNAs/química , MicroRNAs/genética , Nucleotídeos/imunologia , RNA não Traduzido/síntese química , RNA não Traduzido/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Nucleic Acids Res ; 48(W1): W521-W528, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32374865

RESUMO

Gene set enrichment analysis has become one of the most frequently used applications in molecular biology research. Originally developed for gene sets, the same statistical principles are now available for all omics types. In 2016, we published the miRNA enrichment analysis and annotation tool (miEAA) for human precursor and mature miRNAs. Here, we present miEAA 2.0, supporting miRNA input from ten frequently investigated organisms. To facilitate inclusion of miEAA in workflow systems, we implemented an Application Programming Interface (API). Users can perform miRNA set enrichment analysis using either the web-interface, a dedicated Python package, or custom remote clients. Moreover, the number of category sets was raised by an order of magnitude. We implemented novel categories like annotation confidence level or localisation in biological compartments. In combination with the miRBase miRNA-version and miRNA-to-precursor converters, miEAA supports research settings where older releases of miRBase are in use. The web server also offers novel comprehensive visualizations such as heatmaps and running sum curves with background distributions. We demonstrate the new features with case studies for human kidney cancer, a biomarker study on Parkinson's disease from the PPMI cohort, and a mouse model for breast cancer. The tool is freely accessible at: https://www.ccb.uni-saarland.de/mieaa2.


Assuntos
MicroRNAs/metabolismo , Software , Animais , Biomarcadores , Neoplasias da Mama/genética , Carcinoma de Células Renais/genética , Progressão da Doença , Feminino , Humanos , Neoplasias Renais/genética , Camundongos , Doença de Parkinson/genética , Fluxo de Trabalho
9.
RNA Biol ; 17(10): 1416-1426, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32456538

RESUMO

MicroRNAs are regulators of gene expressionand may be key markers in liquid biopsy.Early diagnosis is an effective means to increase patients' overall survival. We generated genome-wide miRNA profiles from serum of patients and controls from the population-based Janus Serum Bank (JSB) and analysed them by bioinformatics and artificial intelligence approaches. JSB contains sera from 318,628 originally healthy persons, more than 96,000 of whom developed cancer. We selected 210 serum samples from patients with lung, colon or breast cancer at three time points prior to diagnosis (up to 32 years prior to diagnosis with median 5 years interval between TPs), one time-point after diagnosis and from individually matched controls. The controls were matched on age and year of all pre-diagnostic sampling time-points for the corresponding case. Using ANOVA we report 70 significantly deregulated markers (adjusted p-value<0.05). The driver for the significance was the diagnostic time point (miR-575, miR-6821-5p, miR-630 with adjusted p-values<10-10). Further, 91miRNAs were differently expressed in pre-diagnostic samples as compared to controls (nominal p < 0.05). Self-organized maps (SOMs)indicated larges effects in lung cancer samples while breast cancer samples showed the least pronounced changes. SOMsalsohighlighted cancer and time point specific miRNA dys-regulation. Intriguingly, a detailed breakdown of the results highlighted that 51% of all miRNAs were highly specific, either for a time-point or a cancer entity. Pathway analysis highlighted 12 pathways including Hipo signalling and ABC transporters.Our results indicate that tumours may be indicated by serum miRNAs decades prior the clinical manifestation.


Assuntos
Biomarcadores Tumorais , MicroRNA Circulante , Biologia Computacional/métodos , MicroRNAs/genética , Neoplasias/diagnóstico , Neoplasias/genética , Inteligência Artificial , Detecção Precoce de Câncer , Humanos , Biópsia Líquida/métodos , Biópsia Líquida/normas , Neoplasias/sangue
10.
Nucleic Acids Res ; 48(D1): D142-D147, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31691816

RESUMO

Since the initial release of miRPathDB, tremendous progress has been made in the field of microRNA (miRNA) research. New miRNA reference databases have emerged, a vast amount of new miRNA candidates has been discovered and the number of experimentally validated target genes has increased considerably. Hence, the demand for a major upgrade of miRPathDB, including extended analysis functionality and intuitive visualizations of query results has emerged. Here, we present the novel release 2.0 of the miRNA Pathway Dictionary Database (miRPathDB) that is freely accessible at https://mpd.bioinf.uni-sb.de/. miRPathDB 2.0 comes with a ten-fold increase of pre-processed data. In total, the updated database provides putative associations between 27 452 (candidate) miRNAs, 28 352 targets and 16 833 pathways for Homo sapiens, as well as interactions of 1978 miRNAs, 24 898 targets and 6511 functional categories for Mus musculus. Additionally, we analyzed publications citing miRPathDB to identify common use-cases and further extensions. Based on this evaluation, we added new functionality for interactive visualizations and down-stream analyses of bulk queries. In summary, the updated version of miRPathDB, with its new custom-tailored features, is one of the most comprehensive and advanced resources for miRNAs and their target pathways.


Assuntos
Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Animais , Humanos , Camundongos , Interface Usuário-Computador
11.
Cells ; 8(10)2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569706

RESUMO

Chronic obstructive pulmonary disease (COPD) is associated with an increased risk of death, reducing life expectancy on average between 5 and 7 years. The survival time after diagnosis, however, varies considerably as a result of the heterogeneity of COPD. Therefore, markers that predict individual survival of COPD patients are of great value. We analyzed baseline molecular profiles and collected 54 months of follow-up data of the cohort study "COPD and SYstemic consequences-COmorbidities NETwork" (COSYCONET). Genome-wide microRNA signatures from whole blood collected at time of the inclusion in the study were generated for 533 COPD patients including patients that deceased during the 54-month follow-up period (n = 53) and patients that survived this period (n = 480). We identified two blood-born microRNAs (miR-150-5p and miR-320b) that were highly predictive for survival of COPD patients. The expression change was then confirmed by RT-qPCR in 245 individuals. Ninety percent of patients with highest expression of miR-150-5p survived the 54-month period in contrast to only 50% of patients with lowest expression intensity. Moreover, the abundance of the oncogenic miR-150-5p in blood of COPD patients was predictive for the development of cancer. Thus, molecular profiles measured at the time of a COPD diagnosis have a high predictive power for the survival of patients.


Assuntos
Biomarcadores/análise , MicroRNAs/genética , Doença Pulmonar Obstrutiva Crônica/mortalidade , Estudos de Casos e Controles , Estudos de Coortes , Seguimentos , Perfilação da Expressão Gênica , Humanos , Prognóstico , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Taxa de Sobrevida
12.
RNA Biol ; 16(8): 1034-1043, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31035857

RESUMO

The envisioned application of miRNAs as diagnostic or prognostic biomarkers calls for an in-depth understanding of their distribution and variability in different physiological states. While effects with respect to ethnic origin, age, or gender are known, the inter-individual variability of miRNAs across the four seasons remained largely hidden. We sequentially profiled the complete repertoire of blood-borne miRNAs for 25 physiologically normal individuals in spring, summer, fall, and winter (altogether 95 samples) and validated the results on 292 individuals (919 samples collected with the Mitra home sampling device) by RT-qPCR. Principal variance component analysis suggests that the largest variability observed in miRNA expression is due to individual variability and the individuals' gender. But the results also highlight a deviation of miRNA activity in samples collected during spring time. Following adjustment for multiple testing, remarkable differences are observed between spring and fall (77 miRNAs). The two most dys-regulated miRNAs were miR-181c-5p and miR-106b-5p (adjusted p-value of 0.007). Other significant miRNAs include miR-140-3p, miR-21-3p, and let-7c-5p. The dys-regulation was validated by RT-qPCR. Systems biology analysis further provides strong evidence for the immunological origin of the signals: dys-regulated miRNAs are enriched in CD56 cells and belong to various signalling and immune-system-related pathways. Our data suggest that besides known confounding factors such as age and sex, also the season in which a test is conducted might have a considerable influence on the expression of blood-borne miRNAs and subsequently might interfere with diagnosis based on such signatures.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/sangue , Estações do Ano , Adulto , Antígeno CD56/sangue , Feminino , Humanos , Masculino , Análise de Componente Principal
13.
Sci Rep ; 8(1): 11584, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30072748

RESUMO

Breast cancer is a heterogeneous disease with distinct molecular subtypes including the aggressive subtype triple-negative breast cancer (TNBC). We compared blood-borne miRNA signatures of early-stage basal-like (cytokeratin-CK5-positive) TNBC patients to age-matched controls. The miRNAs of TNBC patients were assessed prior to and following platinum-based neoadjuvant chemotherapy (NCT). After an exploratory genome-wide study on 21 cases and 21 controls using microarrays, the identified signatures were verified independently in two laboratories on the same and a new cohort by RT-qPCR. We differentiated the blood of TNBC patients before NCT from controls with 84% sensitivity. The most significant miRNA for this diagnostic classification was miR-126-5p (two tailed t-test p-value of 1.4 × 10-5). Validation confirmed the microarray results for all tested miRNAs. Comparing cancer patients prior to and post NCT highlighted 321 significant miRNAs (among them miR-34a, p-value of 1.2 × 10-23). Our results also suggest that changes in miRNA expression during NCT may have predictive potential to predict pathological complete response (pCR). In conclusion we report that miRNA expression measured from blood facilitates early and minimally-invasive diagnosis of basal-like TNBC. We also demonstrate that NCT has a significant influence on miRNA expression. Finally, we show that blood-borne miRNA profiles monitored over time have potential to predict pCR.


Assuntos
Biomarcadores Tumorais/sangue , MicroRNAs , Terapia Neoadjuvante , RNA Neoplásico/sangue , Neoplasias de Mama Triplo Negativas , Biópsia por Agulha , Detecção Precoce de Câncer , Feminino , Seguimentos , Humanos , Metabolômica , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias de Mama Triplo Negativas/sangue , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia
14.
Bioinformatics ; 34(10): 1621-1628, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29281000

RESUMO

Motivation: Although the amount of small non-coding RNA-sequencing data is continuously increasing, it is still unclear to which extent small RNAs are represented in the human genome. Results: In this study we analyzed 303 billion sequencing reads from nearly 25 000 datasets to answer this question. We determined that 0.8% of the human genome are reliably covered by 874 123 regions with an average length of 31 nt. On the basis of these regions, we found that among the known small non-coding RNA classes, microRNAs were the most prevalent. In subsequent steps, we characterized variations of miRNAs and performed a staged validation of 11 877 candidate miRNAs. Of these, many were actually expressed and significantly dysregulated in lung cancer. Selected candidates were finally validated by northern blots. Although isolated miRNAs could still be present in the human genome, our presented set likely contains the largest fraction of human miRNAs. Contact: c.backes@mx.uni-saarland.de or andreas.keller@ccb.uni-saarland.de. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma Humano , MicroRNAs , Análise de Sequência de DNA , Transcriptoma , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA
15.
Oncotarget ; 8(63): 107167-107175, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29291020

RESUMO

miRNAs are typically repressing gene expression by binding to the 3' UTR, leading to degradation of the mRNA. This process is dominated by the eight-base seed region of the miRNA. Further, miRNAs are known not only to target genes but also to target significant parts of pathways. A logical line of thoughts is: miRNAs with similar (seed) sequence target similar sets of genes and thus similar sets of pathways. By calculating similarity scores for all 3.25 million pairs of 2,550 human miRNAs, we found that this pattern frequently holds, while we also observed exceptions. Respective results were obtained for both, predicted target genes as well as experimentally validated targets. We note that miRNAs target gene set similarity follows a bimodal distribution, pointing at a set of 282 miRNAs that seems to target genes with very high specificity. Further, we discuss miRNAs with different (seed) sequences that nonetheless regulate similar gene sets or pathways. Most intriguingly, we found miRNA pairs that regulate different gene sets but similar pathways such as miR-6886-5p and miR-3529-5p. These are jointly targeting different parts of the MAPK signaling cascade. The main goal of this study is to provide a general overview on the results, to highlight a selection of relevant results on miRNAs, miRNA seeds, target genes and target pathways and to raise awareness for artifacts in respective comparisons. The full set of information that allows to infer detailed results on each miRNA has been included in miRPathDB, the miRNA target pathway database (https://mpd.bioinf.uni-sb.de).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA