Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Cachexia Sarcopenia Muscle ; 14(2): 730-744, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36772862

RESUMO

Ageing is accompanied by an inexorable loss of muscle mass and functionality and represents a major risk factor for numerous diseases such as cancer, diabetes and cardiovascular and pulmonary diseases. This progressive loss of muscle mass and function may also result in the insurgence of a clinical syndrome termed sarcopenia, exacerbated by inactivity and disease. Sarcopenia and muscle weakness yield the risk of falls and injuries, heavily impacting on health and social costs. Thus, screening, monitoring and prevention of conditions inducing muscle wasting and weakness are essential to improve life quality in the ageing modern society. To this aim, the reliability of easily accessible and non-invasive blood-derived biomarkers is being evaluated. C-terminal agrin fragment (CAF) has been widely investigated as a neuromuscular junction (NMJ)-related biomarker of muscle dysfunction. This narrative review summarizes and critically discusses, for the first time, the studies measuring CAF concentration in young and older, healthy and diseased individuals, cross-sectionally and in response to inactivity and physical exercise, providing possible explanations behind the discrepancies observed in the literature. To identify the studies investigating CAF in the above-mentioned conditions, all the publications found in PubMed, written in English and measuring this biomarker in blood from 2013 (when CAF was firstly measured in human serum) to 2022 were included in this review. CAF increases with age and in sarcopenic individuals when compared with age-matched, non-sarcopenic peers. In addition, CAF was found to be higher than controls in other muscle wasting conditions, such as diabetes, COPD, chronic heart failure and stroke, and in pancreatic and colorectal cancer cachectic patients. As agrin is also expressed in kidney glomeruli, chronic kidney disease and transplantation were shown to have a profound impact on CAF independently from muscle wasting. CAF concentration raises following inactivity and seems to be lowered or maintained by exercise training. Finally, CAF was reported to be cross-sectionally correlated to appendicular lean mass, handgrip and gait speed; whether longitudinal changes in CAF are associated with those in muscle mass or performance following physical exercise is still controversial. CAF seems a reliable marker to assess muscle wasting in ageing and disease, also correlating with measurements of appendicular lean mass and muscle function. Future research should aim at enlarging sample size and accurately reporting the medical history of each patient, to normalize for any condition, including chronic kidney disease, that may influence the circulating concentration of this biomarker.


Assuntos
Insuficiência Renal Crônica , Sarcopenia , Humanos , Sarcopenia/diagnóstico , Sarcopenia/etiologia , Agrina , Força da Mão/fisiologia , Reprodutibilidade dos Testes , Atrofia Muscular , Biomarcadores , Músculos
2.
Artigo em Inglês | MEDLINE | ID: mdl-36293774

RESUMO

Regular physical activity, recommended by the WHO, is crucial in maintaining a good physical fitness level and health status and slows down the effects of aging. However, there is a lack of knowledge of whether lifelong endurance running, with a volume and frequency above the WHO limits, still brings the same benefits, or several negative effects too. The present study aims to examine the protentional benefits and risks of lifelong endurance running training in Master male athletes, as this level of physical activity is above the WHO recommendations. Within the study, four main groups of participants will be included: (1) endurance-trained master athletes, (2) endurance-trained young athletes, (3) young sedentary adults, and (4) elderly sedentary. Both groups of athletes are strictly marathon runners, who are still actively running. The broad spectrum of the diagnostic tests, from the questionnaires, physical fitness testing, and blood sampling to muscle biopsy, will be performed to obtain the possibility of complexly analyzing the effects of lifelong endurance physical activity on the human body and aging. Moreover, the study will try to discover and explain new relationships between endurance running and diagnostic parameters, not only within aging.


Assuntos
Resistência Física , Corrida , Adulto , Humanos , Masculino , Idoso , Resistência Física/fisiologia , Corrida/fisiologia , Atletas , Envelhecimento/fisiologia , Aptidão Física
3.
Diagnostics (Basel) ; 12(3)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35328120

RESUMO

Langerhans cells represent the first immune cells that sense the entry of external molecules and microorganisms at the epithelial level in the skin. In this pilot case-study, we evaluated Langerhans cells density and progression of epidermal atrophy in permanent spinal cord injury (SCI) patients suffering with either lower motor neuron lesions (LMNSCI) or upper motor neuron lesions (UMNSCI), both submitted to surface electrical stimulation. Skin biopsies harvested from both legs were analyzed before and after 2 years of home-based Functional Electrical Stimulation for denervated degenerating muscles (DDM) delivered at home (h-bFES) by large anatomically shaped surface electrodes placed on the skin of the anterior thigh in the cases of LMNSCI patients or by neuromuscular electrical stimulation (NMES) for innervated muscles in the cases of UMNSCI persons. Using quantitative histology, we analyzed epidermal thickness and flattening and content of Langerhans cells. Linear regression analyses show that epidermal atrophy worsens with increasing years of LMNSCI and that 2 years of skin electrostimulation reverses skin changes, producing a significant recovery of epidermis thickness, but not changes in Langerhans cells density. In UMNSCI, we did not observe any statistically significant changes of the epidermis and of its content of Langerhans cells, but while the epidermal thickness is similar to that of first year-LMNSCI, the content of Langerhans cells is almost twice, suggesting that the LMNSCI induces an early decrease of immunoprotection that lasts at least 10 years. All together, these are original clinically relevant results suggesting a possible immuno-repression in epidermis of the permanently denervated patients.

4.
Eur J Transl Myol ; 31(4)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34761670

RESUMO

The marathon is the most classic Olympic running event. In several cities worldwide it has become very popular with participation increasing during the last 20 years, particularly by Master Athletes. There are evidences that long-distance running could provide considerable health benefits for older runners, specifically risk reduction of cardiovascular diseases, cancer, diabetes, depression, and falls. Several studies have focused on the distribution of participants and their performance on famous marathons such as those of Berlin, Boston and New York. In this preliminary study we have analyzed data from several editions of the Venice marathon, a famous Italian race that attracts people from every corner of the world. The Venice marathon is listed in Abbott World Marathon Majors Wanda Age Group World Ranking and is Bronze Label certificated by IAAF, and Gold Label by FIDAL. The marathon starts outside Venice near Stra, then runs along the Brenta Riviera to Venice where the runners cross the canals over floating bridges set up for the race. For this study we analyzed data of the Venice marathon describing gender distribution in 17 editions (2003-2019), but groups of age-categories and their nationality only in 13 editions from 2007 to 2019. The analysis shows a steady increase in female participation, from 2003 to 2019.

5.
Diagnostics (Basel) ; 11(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34679577

RESUMO

BACKGROUND: The potassium channel encoded by the ether-a-gogo-related gene 1A (erg1a) has been detected in the atrophying skeletal muscle of mice experiencing either muscle disuse or cancer cachexia and further evidenced to contribute to muscle deterioration by enhancing ubiquitin proteolysis; however, to our knowledge, ERG1A has not been reported in human skeletal muscle. METHODS AND RESULTS: Here, using immunohistochemistry, we detect ERG1A immunofluorescence in human Rectus abdominis skeletal muscle sarcolemma. Further, using single point brightness data, we report the detection of ERG1A immunofluorescence at low levels in the Rectus abdominis muscle sarcolemma of young adult humans and show that it trends toward greater levels (10.6%) in healthy aged adults. Interestingly, we detect ERG1A immunofluorescence at a statistically greater level (53.6%; p < 0.05) in the skeletal muscle of older cancer patients than in age-matched healthy adults. Importantly, using immunoblot, we reveal that lower mass ERG1A protein is 61.5% (p < 0.05) more abundant in the skeletal muscle of cachectic older adults than in healthy age-matched controls. Additionally, we report that the ERG1A protein is detected in a cultured human rhabdomyosarcoma line that may be a good in vitro model for the study of ERG1A in muscle. CONCLUSIONS: The data demonstrate that ERG1A is detected more abundantly in the atrophied skeletal muscle of cancer patients, suggesting it may be related to muscle loss in humans as it has been shown to be in mice experiencing muscle atrophy as a result of malignant tumors.

6.
Aging Clin Exp Res ; 33(7): 2053-2059, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34047931

RESUMO

Persons suffering with systemic neuromuscular disorders or chronic organ failures, spend less time for daily physical activity, aggravating their mobility impairments. From 2020, patients at risk are also older adults, who, though negative for the SARS-Cov-2 infection, suffer with a fatigue syndrome due to home restriction/quarantine. Besides eventual psycological managements, it could be useful to offer to these patients a rehabilitation workouts easy to learn and to independently repeat at home (Full-Body In-Bed Gym). Inspired by the proven capability to recover skeletal muscle contractility and strength by home-based volitional exercises and functional electrical stimulation (FES), we suggest for this fatigue syndrome a 10-20 min long daily routine of easy and safe physical exercises that may recover from muscle weakness the main 400 skeletal muscles used for every-day activities. Leg muscles could be trained also by an adjunctive neuro-muscular electrical stimulation (NMES) in frail old persons. Many of the exercises could be performed in bed (Full-Body in-Bed Gym), thus hospitalized patients can learn this light training before leaving the hospital. Full-Body in-Bed Gym is, indeed, an extension of well-established cardiovascular-ventilation rehabilitation training performed by patients after heavy surgery. Blood pressure readings, monitored before and after daily routine of Full-Body in-Bed Gym, demonstrate a transient decrease in peripheral resistance due to increased blood flow to major body muscles. Continued regularly, Full-Body in-Bed Gym may help maintaining independence of frail people, including those suffering with the fatigue syndrome related to the restrictions/quarantine imposed to the general population during the COVID-19 pandemic.


Assuntos
COVID-19 , Terapia por Estimulação Elétrica , Idoso , Estimulação Elétrica , Exercício Físico , Humanos , Força Muscular , Debilidade Muscular , Músculo Esquelético , Pandemias , SARS-CoV-2
7.
Diagnostics (Basel) ; 10(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751308

RESUMO

Spinal cord injury (SCI) produces muscle wasting that is especially severe after complete and permanent damage of lower motor neurons, as can occur in complete conus and cauda equina syndrome. Even in this worst-case scenario, mass and function of permanently denervated quadriceps muscle can be rescued by surface functional electrical stimulation using a purpose designed home-based rehabilitation strategy. Early diagnostics is a key factor in the long-term success of this management. Function of quadriceps muscle was quantitated by force measurements. Muscle gross cross-sections were evaluated by quantitative color computed tomography (CT) and muscle and skin biopsies by quantitative histology, electron microscopy, and immunohistochemistry. Two years of treatment that started earlier than 5 years from SCI produced: (a) an increase in cross-sectional area of stimulated muscles; (b) an increase in muscle fiber mean diameter; (c) improvements in ultrastructural organization; and (d) increased force output during electrical stimulation. Improvements are extended to hamstring muscles and skin. Indeed, the cushioning effect provided by recovered tissues is a major clinical benefit. It is our hope that new trials start soon, providing patients the benefits they need.

8.
Int J Mol Sci ; 21(11)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498275

RESUMO

Physical exercise is deemed the most efficient way of counteracting the age-related decline of skeletal muscle. Here we report a transcriptional study by next-generation sequencing of vastus lateralis biopsies from elderly with a life-long high-level training practice (n = 9) and from age-matched sedentary subjects (n = 5). Unsupervised mixture distribution analysis was able to correctly categorize trained and untrained subjects, whereas it failed to discriminate between individuals who underwent a prevalent endurance (n = 5) or a prevalent resistance (n = 4) training, thus showing that the training mode was not relevant for sarcopenia prevention. KEGG analysis of transcripts showed that physical exercise affected a high number of metabolic and signaling pathways, in particular those related to energy handling and mitochondrial biogenesis, where AMPK and AKT-mTOR signaling pathways are both active and balance each other, concurring to the establishment of an insulin-sensitive phenotype and to the maintenance of a functional muscle mass. Other pathways affected by exercise training increased the efficiency of the proteostatic mechanisms, consolidated the cytoskeletal organization, lowered the inflammation level, and contrasted cellular senescence. This study on extraordinary individuals who trained at high level for at least thirty years suggests that aging processes and exercise training travel the same paths in the opposite direction.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Músculo Esquelético/metabolismo , Resistência Física , Treinamento Resistido , Sarcopenia/prevenção & controle , Idoso , Antropometria , Atletas , Biópsia , Cálcio/metabolismo , Senescência Celular , Regulação da Expressão Gênica , Humanos , Inflamação , Masculino , Mitocôndrias/metabolismo , Ribossomos/metabolismo , Comportamento Sedentário , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Hormônios Tireóideos/metabolismo , Transcrição Gênica
9.
Medicine (Baltimore) ; 98(52): e18509, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31876739

RESUMO

To evaluate progression of skin atrophy during 8 years of complete Conus-Cauda Syndrome and its recovery after 2 years of surface Functional Electrical Stimulation a cohort study was organized and implemented.Functional assessments, tissue biopsies, and follow-up were performed at the Wilhelminenspital, Vienna, Austria; skin histology and immunohistochemistry at the University of Padova, Italy on 13 spinal cord injury persons suffering up to 10 years of complete conus/cauda syndrome. Skin biopsies (n. 52) of both legs were analyzed before and after 2 years of home-based Functional Electrical Stimulation delivered by large anatomically shaped surface electrodes placed on the skin of the anterior thigh. Using quantitative histology we analyzed: 1. Epidermis atrophy by thickness and by area; 2. Skin flattening by computing papillae per mm and Interdigitation Index of dermal-epidermal junctions; 3. Presence of Langerhans cells.Linear regression analyses show that epidermal atrophy and flattening worsen with increasing years post- spinal cord injury and that 2 years of skin electrostimulation by large anatomically shaped electrodes reverses skin changes (pre-functional Electrical Stimulation vs post-functional Electrical Stimulation: thickness 39%, P < .0001; area 41%, P < .0001; papillae n/mm 35%, P < 0.0014; Interdigitation index 11%, P < 0.018), producing a significant recovery to almost normal levels of epidermis thickness and of dermal papillae, with minor changes of Langerhans cells, despite 2 additional years of complete Conus-Cauda Syndrome.In complete Conus-Cauda Syndrome patients, the well documented beneficial effects of 2 years of surface h-b Functional Electrical Stimulation on strength, bulk, and muscle fiber size of thigh muscles are extended to skin, suggesting that electrical stimulation by anatomically shaped electrodes fixed to the skin is also clinically relevant to counteract atrophy and flattening of the stimulated skin. Mechanisms, pros and cons are discussed.


Assuntos
Terapia por Estimulação Elétrica/métodos , Epiderme/patologia , Dermatopatias/terapia , Traumatismos da Medula Espinal/complicações , Medula Espinal , Adulto , Atrofia , Biópsia , Humanos , Pessoa de Meia-Idade , Pele/patologia , Dermatopatias/etiologia , Dermatopatias/patologia , Traumatismos da Medula Espinal/patologia , Síndrome , Coxa da Perna , Adulto Jovem
10.
Eur J Transl Myol ; 28(1): 7373, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29686823

RESUMO

Our previous studies have shown that severely atrophic Quadriceps muscles of spinal cord injury (SCI) patients suffering with complete conus and cauda equina lesions, and thus with permanent denervation-induced atrophy and degeneration of muscle fibers, were almost completely rescued to normal size after two years of home-based Functional Electrical Stimulation (h-bFES). Since we used large surface electrodes to stimulate the thigh muscles, we wanted to know if the skin was affected by long-term treatment. Here we report preliminary data of morphometry of skin biopsies harvested from legs of 3 SCI patients before and after two years of h-bFES to determine the total area of epidermis in transverse skin sections. By this approach we support our recently published results obtained randomly measuring skin thickness in the same biopsies after H-E stain. The skin biopsies data of three subjects, taken together, present indeed a statistically significant 30% increase in the area of the epidermis after two years of h-bFES. In conclusion, we confirm a long term positive modulation of electrostimulated epidermis, that correlates with the impressive improvements of the FES-induced muscle strength and bulk, and of the size of the muscle fibers after 2-years of h-bFES.

11.
Neurol Res ; 40(4): 277-282, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29447083

RESUMO

Our studies have shown that atrophic Quadriceps muscles from spinal cord injury patients suffering with permanent denervation-induced atrophy and degeneration of muscle fibers, were almost completely rescued to normal size after two years of home-based functional electrical stimulation (h-bFES). Because we used surface electrodes to stimulate the muscle, we wanted to know how the skin was affected by the treatments. Here, we report preliminary data from histological morphometry of Hematoxylin-Eosin-stained paraffin-embedded skin sections harvested from the legs of three SCI patients before and after two years of h-bFES. Despite the heterogeneity of gender and time from SCI, comparing pre vs post h-bFES in these three SCI patients, the data show that: (1) In one subject skin biopsies from both the right and left leg experienced a statistically significant increase in thickness of the epidermis after two years of H-bFES; (2) In the other two subjects, one leg showed a significant increase in epidermis thickness, while in the other leg there was either small positive or negative non-significant changes in epidermis thickness; and (3) more importantly, comparison of grouped data from the three subjects shows that there was a significant 28% increase in the thickness of the epidermis in response to two years of h-bFES rehabilitation. In conclusion, the three educational cases show a long-term positive modulation of epidermis thickness after two years of h-bFES, thus extending to skin the positive results previously demonstrated in skeletal muscle, specifically, a substantial recovery of muscle mass and contractile function after long-term h-bFES.


Assuntos
Terapia por Estimulação Elétrica , Epiderme/patologia , Músculo Esquelético/fisiopatologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/inervação , Traumatismos da Medula Espinal/fisiopatologia , Resultado do Tratamento
12.
Eur J Transl Myol ; 28(4): 7914, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30662702

RESUMO

Our previous studies have shown that severely atrophic Quadriceps muscles of spinal cord injury (SCI) persons suffering with complete conus and cauda equina syndrome, and thus with permanent denervation-induced atrophy and degeneration of muscle, were almost completely rescued to normal size after two years of home based Functional Electrical Stimulation (hbFES). Since large surface electrodes were used to stimulate the denervated thigh muscles, we wanted to know if the skin was affected by this peculiar long-term treatment. Indeed, we demonstrated by two approaches that the epidermis decreases in thickness in the long term denervated persons, while it increased to almost pre-SCI values in hbFES compliant SCI persons. Here we report data of morphometry of skin biopsies from both legs of 18 SCI persons, harvested at enrolment in the Project RISE, to test if the Interdigitation Index, a simple measurement of the epidermal-dermal junction, may provide a further precise quantitative evidence of the flattening of the skin in those SCI persons. The Interdigitation Index of the 36 skin biopsies shows a higly significant linear correlation with the years of SCI (p < 0.001). Furthermore, when the 18 SCI persons are divided in two groups (1 to 3.9 versus 4.1 to 8.0 years from SCI, respectively) and the data are compared, the later Group presents a statistically significant -22% decrease (p, 0.029) of the Interdigitation Index. On the other hand counting the papille do not provide the same strong evidence. In conclusion, the Interdigitation Index is an additional sound quantitative structural biomarker of skin atrophy and flattening occurring in SCI. The result correlates with the much severe extent of atrophy of the permanently denervated thigh muscles, as determined at both macro and microscopic levels.We are confident that the Interdigitation Index will provide sound evidence that the effects of hbFES, we previously reported on skeletal muscle and epidermis thickness, will be extended to the dermal layer of the skin, suggesting a coordinated negative effects of SCI on skeletal muscle and skin, and an improvement of both tissues after hbFES. Incoming analyses will be extended to basal lamina, collagene types, elastic fibers and skin annexes in the subcutaneous layer.

13.
Sci Rep ; 6: 26991, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27244599

RESUMO

Recent studies have correlated physical activity with a better prognosis in cachectic patients, although the underlying mechanisms are not yet understood. In order to identify the pathways involved in the physical activity-mediated rescue of skeletal muscle mass and function, we investigated the effects of voluntary exercise on cachexia in colon carcinoma (C26)-bearing mice. Voluntary exercise prevented loss of muscle mass and function, ultimately increasing survival of C26-bearing mice. We found that the autophagic flux is overloaded in skeletal muscle of both colon carcinoma murine models and patients, but not in running C26-bearing mice, thus suggesting that exercise may release the autophagic flux and ultimately rescue muscle homeostasis. Treatment of C26-bearing mice with either AICAR or rapamycin, two drugs that trigger the autophagic flux, also rescued muscle mass and prevented atrogene induction. Similar effects were reproduced on myotubes in vitro, which displayed atrophy following exposure to C26-conditioned medium, a phenomenon that was rescued by AICAR or rapamycin treatment and relies on autophagosome-lysosome fusion (inhibited by chloroquine). Since AICAR, rapamycin and exercise equally affect the autophagic system and counteract cachexia, we believe autophagy-triggering drugs may be exploited to treat cachexia in conditions in which exercise cannot be prescribed.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Autofagia/efeitos dos fármacos , Caquexia/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Debilidade Muscular/prevenção & controle , Condicionamento Físico Animal , Ribonucleotídeos/farmacologia , Sirolimo/farmacologia , Aminoimidazol Carboxamida/farmacologia , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/genética , Caquexia/metabolismo , Caquexia/mortalidade , Caquexia/fisiopatologia , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/mortalidade , Neoplasias do Colo/fisiopatologia , Feminino , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Debilidade Muscular/metabolismo , Debilidade Muscular/fisiopatologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Transplante de Neoplasias , Análise de Sobrevida
14.
Cell Transplant ; 23 Suppl 1: S5-17, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25302689

RESUMO

Currently, there is a lack of effective therapeutic methods to restore neurological function for chronic complete spinal cord injury (SCI) by conventional treatment. Neurorestorative strategies with positive preclinical results have been translated to the clinic, and some patients have gotten benefits and their quality of life has improved. These strategies include cell therapy, neurostimulation or neuromodulation, neuroprosthesis, neurotization or nerve bridging, and neurorehabilitation. The aim of this consensus by 31 experts from 20 countries is to show the objective evidence of clinical neurorestoration for chronic complete SCI by the mentioned neurorestorative strategies. Complete chronic SCI patients are no longer told, "nothing can be done." The clinical translation of more effective preclinical neurorestorative strategies should be encouraged as fast as possible in order to benefit patients with incurable CNS diseases. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.


Assuntos
Consenso , Regeneração Nervosa , Medicina Regenerativa , Traumatismos da Medula Espinal/terapia , Doença Crônica , Humanos , Medicina Regenerativa/ética , Transplante de Células-Tronco/efeitos adversos , Pesquisa Translacional Biomédica/ética
15.
Cell Rep ; 8(5): 1509-21, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25176656

RESUMO

The cellular basis of age-related tissue deterioration remains largely obscure. The ability to activate compensatory mechanisms in response to environmental stress is an important factor for survival and maintenance of cellular functions. Autophagy is activated both under short and prolonged stress and is required to clear the cell of dysfunctional organelles and altered proteins. We report that specific autophagy inhibition in muscle has a major impact on neuromuscular synaptic function and, consequently, on muscle strength, ultimately affecting the lifespan of animals. Inhibition of autophagy also exacerbates aging phenotypes in muscle, such as mitochondrial dysfunction, oxidative stress, and profound weakness. Mitochondrial dysfunction and oxidative stress directly affect acto-myosin interaction and force generation but show a limited effect on stability of neuromuscular synapses. These results demonstrate that age-related deterioration of synaptic structure and function is exacerbated by defective autophagy.


Assuntos
Envelhecimento , Autofagia , Músculo Esquelético/metabolismo , Junção Neuromuscular/metabolismo , Actinas/metabolismo , Animais , Proteína 7 Relacionada à Autofagia , Linhagem Celular , Humanos , Longevidade , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias Musculares/metabolismo , Força Muscular , Músculo Esquelético/fisiologia , Miosinas/metabolismo , Junção Neuromuscular/ultraestrutura , Estresse Oxidativo
16.
J Neuropathol Exp Neurol ; 73(4): 284-94, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24607961

RESUMO

The histologic features of aging muscle suggest that denervation contributes to atrophy, that immobility accelerates the process, and that routine exercise may protect against loss of motor units and muscle tissue. Here, we compared muscle biopsies from sedentary and physically active seniors and found that seniors with a long history of high-level recreational activity up to the time of muscle biopsy had 1) lower loss of muscle strength versus young men (32% loss in physically active vs 51% loss in sedentary seniors); 2) fewer small angulated (denervated) myofibers; 3) a higher percentage of fiber-type groups (reinnervated muscle fibers) that were almost exclusive of the slow type; and 4) sparse normal-size muscle fibers coexpressing fast and slow myosin heavy chains, which is not compatible with exercise-driven muscle-type transformation. The biopsies from the old physically active seniors varied from sparse fiber-type groupings to almost fully transformed muscle, suggesting that coexpressing fibers appear to fill gaps. Altogether, the data show that long-term physical activity promotes reinnervation of muscle fibers and suggest that decades of high-level exercise allow the body to adapt to age-related denervation by saving otherwise lost muscle fibers through selective recruitment to slow motor units. These effects on size and structure of myofibers may delay functional decline in late aging.


Assuntos
Envelhecimento/fisiologia , Exercício Físico/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Quadríceps/inervação , Adulto , Idoso , Análise de Variância , Biópsia , Feminino , Humanos , Laminina/metabolismo , Masculino , Atividade Motora , Força Muscular/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Cadeias Leves de Miosina/metabolismo , Regeneração Nervosa/fisiologia , Moléculas de Adesão de Célula Nervosa/metabolismo , Adulto Jovem
17.
Eur J Transl Myol ; 24(1): 3296, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26913127

RESUMO

We will here discuss the following points related to Home-based Functional Electrical Stimulation (h-b FES) as treatment for patients with permanently denervated muscles in their legs: 1. Upper (UMN) and lower motor neuron (LMN) damage to the lower spinal cord; 2. Muscle atrophy/hypertrophy versus processes of degeneration, regeneration, and recovery; 3. Recovery of twitch- and tetanic-contractility by h-b FES; 4. Clinical effects of h-b FES using the protocol of the "Vienna School"; 5. Limitations and perspectives. Arguments in favor of using the Vienna protocol include: 1. Increased muscle size in both legs; 2. Improved tetanic force production after 3-5 months of percutaneous stimulation using long stimulus pulses (> 100 msec) of high amplitude (> 80 mAmp), tolerated only in patients with no pain sensibility; 3. Histological and electron microscopic evidence that two years of h-b FES return muscle fibers to a state typical of two weeks denervated muscles with respect to atrophy, disrupted myofibrillar structure, and disorganized Excitation-Contraction Coupling (E-CC) structures; 4. The excitability never recovers to that typical of normal or reinnervated muscles where pulses less than 1 msec in duration and 25 mAmp in intensity excite axons and thereby muscle fibres. It is important to motivate these patients for chronic stimulation throughout life, preferably standing up against the load of the body weight rather than sitting. Only younger and low weight patients can expect to be able to stand-up and do some steps more or less independently. Some patients like to maintain the h-b FES training for decades. Limitations of the procedure are obvious, in part related to the use of multiple, large surface electrodes and the amount of time patients are willing to use for such muscle training.

18.
Eur J Transl Myol ; 24(2): 2940, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26913132

RESUMO

Functional Electrical Stimulation on Paraplegic Patients. We report on clinical and physiological effects of 8 months Functional Electrical Stimulation (FES) of quadriceps femoris muscle on 16 paraplegic patients. Each patient had muscle biopsies, CT-muscle diameter measurements, knee extension strength testing carried out before and after 8 months FES training. Skin perfusion was documented through infrared telethermography and xenon clearance, muscle perfusion was recorded through thallium scintigraphy. After 8 months FES training baseline skin perfusion showed 86 % increase, muscle perfusion was augmented by 87 %. Muscle fiber diameters showed an average increase of 59 % after 8 months FES training. Muscles in patients with spastic paresis as well as in patients with denervation showed an increase in aerob and anaerob muscle enzymes up to the normal range. Even without axonal neurotropic substances FES was able to demonstrate fiberhypertrophy, enzyme adaptation and intracellular structural benefits in denervated muscles. The increment in muscle area as visible on CT-scans of quadriceps femoris was 30 % in spastic paraplegia and 10 % in denervated patients respectively. FES induced changes were less in areas not directly underneath the surface electrodes. We strongly recommend the use of Kern's current for FES in denervated muscles to induce tetanic muscle contractions as we formed a very critical opinion of conventional exponential current. In patients with conus-cauda-lesions FES must be integrated into modern rehabilitation to prevent extreme muscle degeneration and decubital ulcers. Using FES we are able to improve metabolism and induce positive trophic changes in our patients lower extremities. In spastic paraplegics the functions "rising and walking" achieved through FES are much better training than FES ergometers. Larger muscle masses are activated and an increased heart rate is measured, therefore the impact on cardiovascular fitness and metabolism is much greater. This effectively addresses and prevents all problems which result from inactivity in paraplegic patients.

19.
Neurol Res ; 33(7): 750-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21756556

RESUMO

OBJECTIVES: This paper describes a novel approach to determine structural changes in bone, muscle, and tendons using medical imaging, finite element models, and processing techniques to evaluate and quantify: (1) progression of atrophy in permanently lower motor neuron (LMN) denervated human muscles, and tendons; (2) their recovery as induced by functional electrical stimulation (FES); and (3) changes in bone mineral density and bone strength as effect of FES treatment. METHODS: Briefly, we used three-dimensional reconstruction of muscle belly, tendons, and bone images to study the structural changes occurring in these tissues in paralysed subjects after complete lumbar-ischiadic spinal cord injury (SCI). These subjects were recruited through the European project RISE, an endeavour designed to establish a novel clinical rehabilitation method for patients who have permanent and non-recoverable muscle LMN denervation in the lower extremities. This paper describes the use of segmentation techniques to study muscles, tendons, and bone in several states: healthy, LMN denervated-degenerated but not stimulated, and LMN denervated-stimulated. Here, we have used medical images to develop three-dimensional models and advanced imaging, including computational tools to display tissue density. Different tissues are visualized associating proper Hounsfield intervals defined experimentally to fat, connective tissue, and muscle. Finite element techniques are used to calculate Young's modulus on the patella bone and to analyse correlation between muscle contraction and bone strength changes. RESULTS: These analyses show restoration of muscular structures, tendons, and bone after FES as well as decline of the same tissues when treatment is not performed. This study suggests also a correlation between muscle growth due to FES treatment and increase in density and strength in patella bone. CONCLUSION: Segmentation techniques and finite element analysis allow the study of the structural changes of human skeletal muscle, tendons, and bone in SCI patient with LMN injury and to monitor effects and changes in tissue composition due to FES treatment. This work demonstrates improved bone strength in the patella through the FES treatment applied on the quadriceps femur.


Assuntos
Osso e Ossos/patologia , Terapia por Estimulação Elétrica/métodos , Doença dos Neurônios Motores/terapia , Músculo Esquelético/patologia , Traumatismos da Medula Espinal/terapia , Tendões/patologia , Adulto , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Humanos , Imageamento Tridimensional/métodos , Masculino , Doença dos Neurônios Motores/patologia , Músculo Esquelético/diagnóstico por imagem , Traumatismos da Medula Espinal/patologia , Tendões/diagnóstico por imagem , Tomografia Computadorizada Espiral
20.
Artif Organs ; 35(3): 275-81, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21401674

RESUMO

Muscle tissue composition accounting for the relative content of muscle fibers and intramuscular adipose and loose fibrous tissues can be efficiently analyzed and quantified using images from spiral computed tomography (S-CT) technology and the associated distribution of Hounsfield unit (HU) values. Muscle density distribution, especially when including the whole muscle volume, provides remarkable information on the muscle condition. Different physiological and pathological scenarios can be depicted using the muscle characterization technique based on the HU values and the definition of appropriate intervals and the association of such intervals to different colors. Using this method atrophy, degeneration, and restoration in denervated muscle undergoing electrical stimulation treatments can be clearly displayed and monitored. Moreover, finite element methods are employed to calculate Young's modulus on the patella bone and to analyze correlation between muscle contraction and bone strength changes. The reliability of this tool though depends on S-CT assessment and calibration. To assess imaging quality and the use of HU values to display muscle composition, different S-CT devices are compared using a Quasar body scanner. Density distributions and volumes of various calibration elements such as lung, polyethylene, water equivalent, and trabecular and dense bone are measured with different scanning protocols and at different points of time. The results show that every scanned element undergoes HU variations, which are greater for materials at the extremes of the HU scale, such as dense bone and lung inhale. Moreover, S-CT scanning with low tube voltages (80 KV) produces inaccurate HU values especially in bones. In conclusion, 3-D modeling techniques based on S-CT scanning is a powerful follow-up tool that may provide structural information at the millimeter scale, and thus may drive choice and timing to validate rehabilitation protocols.


Assuntos
Osso e Ossos/diagnóstico por imagem , Terapia por Estimulação Elétrica , Imageamento Tridimensional/métodos , Músculos/diagnóstico por imagem , Traumatismos da Medula Espinal/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Terapia por Estimulação Elétrica/métodos , Humanos , Traumatismos da Medula Espinal/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA